Advertisement

Fungal Polyketides: Chemical Diversity and Their Cytotoxic Effects

  • Hidayat HussainEmail author
  • Barbara Schulz
  • Ivan R. Green
Chapter
Part of the Sustainable Development and Biodiversity book series (SDEB, volume 24)

Abstract

Compounds isolated from different natural sources have over the years played crucial roles in the treatment of a wide range of human diseases. Over the past six decades, microorganisms have provided valuable active compounds for the treatment of various diseases. Fungi, in general, produce diverse structural classes of natural products including polyketides, a major class of secondary metabolites obtained from various natural sources‚ which as a group have interesting chemical diversity. In addition, polyketides are known to possess a number of biological and pharmacological effects, viz. cytotoxic, antibacterial, antifungal, antiparasitic, and immunosuppressive effects. In this chapter the focus is on describing the cytotoxic effects of polyketides isolated from fungi and in particular their potential as cancerostatic pharmaceuticals.

Keywords

Polyketides Fungi Cytotoxicity Chemcial diversity 

Notes

Acknowledgements

The author (HH) thanks the Alexander von Humboldt Foundation for its generous support in providing the opportunity to do work in Germany, which facilitated the writing of this review. The authors want to thank Dr. Abdullah M. Al-Sadi who helped with comments and criticism by reading the manuscript.

References

  1. Agatsuma T, Akama T, Nara S, Matsumiya S, Nakai R, Ogawa H, Otaki S, Ikeda SI, Saitoh Y, Kanda Y (2002) UCS1025A and B, new antitumor antibiotics from the fungus Acremonium species. Org Lett 4:4387–4390PubMedCrossRefGoogle Scholar
  2. Al-Said MS, El-Khawaja SM, El-Feraly FS, Hufford CD (1990) 9-Deoxy drimane sesquiterpenes from Canella winterana. Phytochemistry 29:975–977CrossRefGoogle Scholar
  3. Belofsky GN, Jensen PR, Renner MK, Fenical W (1998) New cytotoxic sesquiterpenoid nitrobenzoyl esters from a marine isolate of the fungus Aspergillus versicolor. Tetrahedron 54:1715–1724CrossRefGoogle Scholar
  4. Bünger J, Westphal G, Mönnich A, Hinnendahl B, Hallier E, Müller M (2004) Cytotoxicity of occupationally and environmentally relevant mycotoxins. Toxicology 202:199–211PubMedCrossRefGoogle Scholar
  5. Cabrera GM, Roberti MJ, Wright JE, Seldes AM (2002) Cryptoporic and isocryptoporic acids from the fungal cultures of Polyporus arcularius and P. ciliatus. Phytochemistry 61:189–193PubMedCrossRefGoogle Scholar
  6. Cai P, McPhail AT, Krainer E, Katz B, Pearce C, Boros C, Caceres B, Smith D, Houck DR (1999) Mycoepoxydiene represents a novel class of fungal metabolites. Tetrahedron Lett 1479–1482CrossRefGoogle Scholar
  7. Cai S, King JB, Du L, Powell DR, Cichewicz RH (2014) Bioactive sulfur-containing sulochrin dimers and other metabolites from an Alternaria sp. isolate from a Hawaiian soil sample. J Nat Prod 77:2280–2287PubMedPubMedCentralCrossRefGoogle Scholar
  8. Chen C, Zhu H, Wang J, Yang J, Li XN, Wang J, Chen K, Wang Y, Luo Z, Yao G, Xue Y (2015) Armochaetoglobins K-R, anti-HIV pyrrole-based cytochalasans from Chaetomium globosum TW1-1. Eur J Org Chem 2015:3086–3094CrossRefGoogle Scholar
  9. Chinworrungsee M, Wiyakrutta S, Sriubolmas N, Chuailua P, Suksamrarn A (2008) Cytotoxic activities of trichothecenes isolated from an endophytic fungus belonging to order Hypocreales. Archi Pharmacal Res 31:611–616CrossRefGoogle Scholar
  10. Christian OE, Compton J, Christian KR, Mooberry SL, Valeriote FA, Crews P (2005) Using jasplakinolide to turn on pathways that enable the isolation of new chaetoglobosins from Phomospis asparagi. J Nat Prod 68:1592–1597PubMedPubMedCentralCrossRefGoogle Scholar
  11. Cimmino A, Andolfi A, Berestetskiy A, Evidente A (2008) Production of phytotoxins by Phoma exigua var. exigua, a potential mycoherbicide against perennial thistles. J Agric Food Chem 56:6304–6309PubMedCrossRefGoogle Scholar
  12. Demain AL, Sanchez S (2009) Microbial drug discovery: 80 years of progress. J Antibiot 62:5–16PubMedCrossRefGoogle Scholar
  13. Demain AL, Vaishnav P (2011) Natural products for cancer chemotherapy. Microbial Biotechnol 4:687–699CrossRefGoogle Scholar
  14. Devkota KP, Covell D, Ransom T, McMahon JB, Beutler JA (2013) Growth inhibition of human colon carcinoma cells by sesquiterpenoids and tetralones of Zygogynum calothyrsum. J Nat Prod 76:710–714PubMedPubMedCentralCrossRefGoogle Scholar
  15. Ding G, Song YC, Chen JR, Xu C, Ge HM, Wang XT, Tan RX (2006) Chaetoglobosin U, a cytochalasan alkaloid from endophytic Chaetomium globosum IFB-E019. J Nat Prod 69:302–304PubMedCrossRefGoogle Scholar
  16. Ding G, Zheng Z, Liu S, Zhang H, Guo L, Che Y (2009) Photinides A–F, cytotoxic benzofuranone-derived γ-Lactones from the plant endophytic fungus Pestalotiopsis photiniae. J Nat Prod 72:942–945PubMedCrossRefGoogle Scholar
  17. Dou H, Song YX, Liu XQ, Gong W, Li EG, Tan RX, Hou YY (2011) Chaetoglobosin Fex from the marine-derived endophytic fungus inhibits induction of inflammatory mediators via toll-like receptor 4 signaling in macrophages. Biol Pharm Bull 34:1864–1873PubMedCrossRefGoogle Scholar
  18. Donoso R, Rivera-sagredo A, Hueso-rodriguez JA, Elson SW (1997) A new chaetoglobosin isolated from a fungus of the genus Discosia. Nat Prod Lett 10:49–54CrossRefGoogle Scholar
  19. Du L, Zhu T, Liu H, Fang Y, Zhu W, Gu Q (2008) Cytotoxic polyketides from a marine-derived fungus Aspergillus glaucus. J Nat Prod 71:1837–1842PubMedCrossRefGoogle Scholar
  20. Erkel G, Lorenzen K, Anke T, Velten R, Gimenez A, Steglich W (1995) Kuehneromycins A and B, two new biological active compounds from a Tasmanian kuehneromyces sp. (Strophariaceae. Basidiomycetes Z Naturforsch C Biosci 50:1–10CrossRefGoogle Scholar
  21. El-Elimat T, Figueroa M, Raja HA, Graf TN, Swanson SM, Falkinham JO, Wani MC, Pearce CJ, Oberlies NH (2015) Biosynthetically distinct cytotoxic polyketides from Setophoma terrestris. Eur J Org Chem 2015:109–2021CrossRefGoogle Scholar
  22. Evidente A, Kornienko A, Cimmino A, Andolfi A, Lefranc F, Mathieu V, Kiss R (2014) Fungal metabolites with anticancer activity. Nat Prod Rep 31:617–627PubMedCrossRefGoogle Scholar
  23. Fang LZ, Qing C, Shao HJ, Yang YD, Dong ZJ, Wang F, Zhao W, Yang WQ, Liu JK (2006) Hypocrellin D, a cytotoxic fungal pigment from fruiting bodies of the ascomycete Shiraia bambusicola. J Antibiot 59:351–354PubMedCrossRefGoogle Scholar
  24. Fleming A (1929) On the antibacterial action of cultures of Penicillium, with special reference to their use in the isolation of B. influenzae. Br J Exp Pathol 10:226–236PubMedCentralPubMedGoogle Scholar
  25. Gao H, Zhou L, Li D, Gu Q, Zhu TJ (2013) New cytotoxic metabolites from the marine-derived fungus Penicillium sp. ZLN29. Helv Chim Acta 96:514–519CrossRefGoogle Scholar
  26. Garlaschelli L, Mellerio G, Vidari G, Vita-Finzi P (1994) New fatty acid esters of drimane sesquiterpenes from Lactarius uvidus. J Nat Prod 57:905–910PubMedCrossRefGoogle Scholar
  27. Grabley S, Thiericke R, Zerlin M, GÖHRT A, Philipps S, Zeeck A (1996) New albrassitriols from Aspergillus sp. (FH-A 6357). J Antibiot 49:593–595PubMedCrossRefGoogle Scholar
  28. Hayes MA, Wrigley SK, Chetland I, Reynolds EE, Ainsworth AM, Renno DV, Latif MA, Cheng XM, Hupe DJ, Charlton P, Doherty AM (1996) Novel drimane sesquiterpene esters from Aspergillus ustus var. pseudodeflectus with endothelin receptor binding activity. J Antibiot 49:505–512PubMedCrossRefGoogle Scholar
  29. Hammerschmidt L, Debbab A, Ngoc TD, Wray V, Hemphil CP, Lin W, Broetz-Oesterhelt H, Kassack MU, Proksch P, Aly AH (2014) Polyketides from the mangrove-derived endophytic fungus Acremonium strictum. Tetrahedron Lett 55:3463–3468CrossRefGoogle Scholar
  30. He H, Yang HY, Bigelis R, Solum EH, Greenstein M, Carter GT (2002) Pyrrocidines A and B, new antibiotics produced by a filamentous fungus. Tetrahedron Lett 43(9):1633–1636CrossRefGoogle Scholar
  31. Hewage RT, Aree T, Mahidol C, Ruchirawat S, Kittakoop P (2014) One strain-many compounds (OSMAC) method for production of polyketides, azaphilones, and an isochromanone using the endophytic fungus Dothideomycete sp. Phytochemistry 108:87–94PubMedCrossRefGoogle Scholar
  32. Hibbett DS, Ohman A, Glotzer D, Nuhn M, Kirk P, Nilsson RH (2011) Progress in molecular and morphological taxon discovery in Fungi and options for formal classification of environmental sequences. Fungal Biol Rev 25:35–47CrossRefGoogle Scholar
  33. Hussain H, Al-Sadi AM, Schulz B, Steinert M, Khan A, Green IR, Ahmed I (2017) A fruitful decade for fungal polyketides from 2007 to 2016: antimicrobial activity, chemotaxonomy and chemodiversity. Fut Med Chem 9:1631–1648CrossRefGoogle Scholar
  34. Hu Y, Hao X, Chen L, Akhberdi O, Yu X, Liu Y, Zhu X (2018) Gα-cAMP/PKA pathway positively regulates pigmentation, chaetoglobosin A biosynthesis and sexual development in Chaetomium globosum. PLoS ONE 13:e0195553PubMedPubMedCentralCrossRefGoogle Scholar
  35. Ichihara A, Katayama K, Teshima H, Oikawa H, Sakamura S (1996) Chaetoglobosin O and other phytotoxic metabolites from Cylindrocladium floridanum, a causal fungus of Alfalfa black rot disease. Biosci Biotechnol Biochem 60:360–361PubMedCrossRefGoogle Scholar
  36. Igarashi Y, Miura SS, Fujita T, Furumai T (2006) Pterocidin, a Cytotoxic Compound from the Endophytic Streptomyces hygroscopicus. J Antibiot 59:193–195PubMedCrossRefGoogle Scholar
  37. Iwamoto C, Yamada T, Ito Y, Minoura K, Numata A (2001) Cytotoxic cytochalasans from a Penicillium species separated from a marine alga. Tetrahedron 57:2997–3004CrossRefGoogle Scholar
  38. Isaka M, Yangchum A, Intamas S, Kocharin K, Jones EG, Kongsaeree P, Prabpai S (2009) Aigialomycins and related polyketide metabolites from the mangrove fungus Aigialus parvus BCC 5311. Tetrahedron 65:4396–4403CrossRefGoogle Scholar
  39. Jiao W, Feng Y, Blunt JW, Cole AL, Munro MH (2004) Chaetoglobosins Q, R, and T, three further new metabolites from Chaetomiumg lobosum. J Nat Prod 67:1722–1725PubMedCrossRefPubMedCentralGoogle Scholar
  40. Kasai Y, Komatsu K, Shigemori H, Tsuda M, Mikami Y, Kobayashi JI (2005) Cladionol A, a polyketide glycoside from marine-derived fungus Gliocladium species. J Nat Prod 68:777–779PubMedCrossRefGoogle Scholar
  41. Kikuchi H, Isobe M, Kurata S, Katou Y, Oshima Y (2012) New dimeric and monomeric chromanones, gonytolides D-G, isolated from the fungus Gonytrichum sp. Tetrahedron 68:6218–6223CrossRefGoogle Scholar
  42. Kralj A, Kehraus S, Krick A, Eguereva E, Kelter G, Maurer M, Wortmann A, Fiebig HH, Koenig GM (2006) Arugosins G and H: Prenylated polyketides from the marine-derived fungus Emericella nidulans var. acristata. J Nat Prod 69:995–1000PubMedCrossRefGoogle Scholar
  43. Kohno J, Nishio M, Sakurai M, Kawano K, Hiramatsu H, Kameda N, Kishi N, Yamashita T, Okuda T, Komatsubara S (1999) Isolation and structure determination of TMC-151s: novel polyketide antibiotics from Gliocladium catenulatum Gilman & Abbott TC 1280. Tetrahedron 55:7771–7786CrossRefGoogle Scholar
  44. Kono K, Tanaka M, Ogita T, Hosoya T, Kohama T (2000) F-12509A, a new sphingosine kinase inhibitor, produced by a discomycete. J Antibiot 53:459–466PubMedCrossRefGoogle Scholar
  45. Kioy D, Gray AI, Waterman PG (1990a) A comparative study of the stem-bark drimane sesquiterpenes and leaf volatile oils of Warburgia ugandensis and W. stuhlmannii. Phytochemistry 29:3535–3538CrossRefGoogle Scholar
  46. Kioy D, Gray AI, Waterman PG (1990b) 3β, 9α-Dihydroxycinnamolide: A further novel drimane sesquiterpene from the stem bark of Canella winterana. J Nat Prod 53:1372–1373CrossRefGoogle Scholar
  47. Kumaran RS, Kim HJ, Hur B-K (2010) Taxol promising fungal endophyte, Pestalotiopsis spp. from Taxus cuspidata. J Biosci Bioeng 110:541–546PubMedCrossRefGoogle Scholar
  48. Lee YM, Li H, Hong J, Cho HY, Bae KS, Kim MA, Kim DK, Jung JH (2010) Bioactive metabolites from the sponge-derived fungus Aspergillus versicolor. Arch Pharm Res 33:231–235PubMedCrossRefGoogle Scholar
  49. Li H, Xiao J, Gao YQ, Tang JJ, Zhang AL, Gao JM (2014) Chaetoglobosins from Chaetomium globosum, an endophytic fungus in Ginkgo biloba, and their phytotoxic and cytotoxic activities. J Agric Food Chem 62:3734–3741PubMedCrossRefGoogle Scholar
  50. Li D, Chen L, Zhu T, Kurtán T, Mándi A, Zhao Z, Li J, Gu Q (2011) Chloctanspirones A and B, novel chlorinated polyketides with an unprecedented skeleton, from marine sediment derived fungus Penicillium terrestre. Tetrahedron 67:7913–7918CrossRefGoogle Scholar
  51. Lin X, Huang Y, Fang M, Wang J, Zheng Z, Su W (2005) Cytotoxic and antimicrobial metabolites from marine lignicolous fungi, Diaporthe sp. FEMS Microbiol Lett 251:53–58PubMedCrossRefGoogle Scholar
  52. Lin Z, Zhu T, Fang Y, Gu Q, Zhu W (2008) Polyketides from Penicillium sp. JP-1, an endophytic fungus associated with the mangrove plant Aegiceras corniculatum. Phytochemistry 69:1273–1278PubMedCrossRefGoogle Scholar
  53. Liao WY, Shen CN, Lin LH, Yang YL, Han HY, Chen JW, Kuo SC, Wu SH, Liaw CC (2012) Asperjinone, a nor-neolignan, and terrein, a suppressor of ABCG2-expressing breast cancer cells, from thermophilic Aspergillus terreus. J Nat Prod 75:630–635PubMedCrossRefGoogle Scholar
  54. Lorenzen K, Anke T, Anders U, Hindermayr H, Hansske F (1994) Two inhibitors of platelet aggregation from a Panus species (Basidiomycetes). Z Naturforsch C Biosci 49:132–138CrossRefGoogle Scholar
  55. Mahmoud II, Kinghorn AD, Cordell GA, Farnsworth NR (1979) Cytotoxic drimane sesquiterpenoids from Capsicodendron dinisii. J Nat Prod 42(6):681Google Scholar
  56. Masters K, Braese S (2012) Xanthones from fungi, lichens, and bacteria: The natural products and their synthesis. Chem Rev 112:3717–3776PubMedCrossRefGoogle Scholar
  57. Mohamed IE, Gross H, Pontius A, Kehraus S, Krick A, Kelter G, Maier A, Fiebig HH, König GM (2009) Epoxyphomalin A and B, prenylated polyketides with potent cytotoxicity from the marine-derived fungus Phoma sp. Org Lett 11:5014–5017PubMedCrossRefGoogle Scholar
  58. Mulrooney CA, O’Brien EM, Morgan BJ, Kozlowski MC (2012) Perylenequinones: isolation, synthesis, and biological activity. Eur J Org Chem 2012:3887–3904CrossRefGoogle Scholar
  59. McCorkindale NJ, Calzadilla CH, Hutchinson SA, Kitson DH, Ferguson G, Campbell IM (1981) The structure and chemistry of pebrolide, desacetylpebrolide and 1-deoxypebrolide, sesquiterpene benzoates from Penicillium brevicompactum. Tetrahedron 37(3):649–653CrossRefGoogle Scholar
  60. Mashimbye MJ, Maumela MC, Drewes SE (1999) A drimane sesquiterpenoid lactone from Warburgia salutaris. Phytochemistry 51:435–438CrossRefGoogle Scholar
  61. Mitova MI, Lang G, Blunt JW, Cummings NJ, Cole AL, Robinson WT, Munro MH (2006) Cladobotric Acids A–F: New cytotoxic polyketides from a New Zealand Cladobotryum sp. J Org Chem 71:492–497PubMedCrossRefPubMedCentralGoogle Scholar
  62. Mohr, K. I. (2016) History of antibiotics research. In: Stadler M, Dersch P (2016) How to overcome the antibiotic crisis. Current topics in microbiology and immunology, vol 398, pp 237–272. Springer International Publishing AGGoogle Scholar
  63. Nakai R, Ogawa H, Asai A, Ando K, Agaisuma T, Maisumiya S, Akinaga S, Yamashita Y, Mizukami T (2000) UCS1025A, a novel antibiotic produced by Acremonium sp. J Antibiot 53:294–296PubMedCrossRefPubMedCentralGoogle Scholar
  64. Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75:311–335PubMedPubMedCentralCrossRefGoogle Scholar
  65. Nozawa O, Okazaki T, Sakai N, Komurasaki T, Hanada K, Morimoto S, Zx Chen, Bm He, Mizoue K (1995) A novel bioactive δ lactone FD-211. J Antibiot 48:113–118PubMedCrossRefPubMedCentralGoogle Scholar
  66. Nozawa O, Okazaki T, Morimoto S, Chen ZX, He BM, Mizoue K (2000) Waol B, a new trihydrofuran derivative with cytocidal activity, isolated from Myceliophthora lutea. J Antibiot 53:1296–1300PubMedCrossRefPubMedCentralGoogle Scholar
  67. Numafa A, Takahashi C, Ito Y, Minoura K, Yamada T, Matsuda C, Nomoto K (1996) Penochalasins, a novel class of cytotoxic cytochalasans from a Penicillium species separated from a marine alga: Structure determination and solution conformation. J Chem Soc Perkin Trans 1:239–245Google Scholar
  68. Osterhage C, Kaminsky R, König GM, Wright AD (2000) Ascosalipyrrolidinone a, an antimicrobial alkaloid, from the obligate marine fungus Ascochyta s alicorniae. J Org Chem 65:6412–6417PubMedCrossRefPubMedCentralGoogle Scholar
  69. Paul A, Thapa G, Basu A, Mazumdar P, Kalita MC, Sahoo L (2010) Rapid plant regeneration, analysis of genetic fidelity and essential aromatic oil content of micropropagated plants of Patchouli, Pogostemon cablin (Blanco) Benth.—An industrially important aromatic plant. Ind Crop Prod 32:366–374CrossRefGoogle Scholar
  70. Pongcharoen W, Rukachaisirikul V, Phongpaichit S, Rungjindamai N, Sakayaroj J (2006) Pimarane diterpene and cytochalasin Derivatives from the endophytic fungus Eutypella scoparia PSU-D44. J Nat Prod 69:856–858PubMedCrossRefGoogle Scholar
  71. Pulici M, Sugawara F, Koshino H, Uzawa J, Yoshida S, Lobkovsky E, Clardy J (1996) A new iso drimeninol from Pestalotiopsis sp. J Nat Prod 59:47–48Google Scholar
  72. Pulici M, Sugawara F, Koshino H, Okada G, Esumi Y, Uzawa J, Yoshida S (1997) Metabolites of Pestalotiopsis spp., endophytic fungi of Taxus brevifolia. Phytochemistry 46(2):313–319CrossRefGoogle Scholar
  73. Prachya S, Wiyakrutta S, Sriubolmas N, Ngamrojanavanich N, Mahidol C, Ruchirawat S, Kittakoop P (2007) Cytotoxic mycoepoxydiene derivatives from an endophytic fungus Phomopsis sp. isolated from Hydnocarpus anthelminthicus. Planta Med 73:1418–1420PubMedCrossRefGoogle Scholar
  74. Rahbæk L, Christophersen C, Frisvad J, Bengaard HS, Larsen S, Rassing BR (1997) Insulicolide A: a new nitrobenzoyloxy-substituted sesquiterpene from the marine fungus Aspergillus insulicola. J Nat Prod 60:811–813CrossRefGoogle Scholar
  75. Rajab MS, Ndegwa JM (2000) 11α-Hydroxy muzigadiolide, a novel drimane sesquiterpene from the stem bark of Warburgia ugandensis. Bull Chem Soc Ethiop 14:45Google Scholar
  76. Rastogi N, Abaul J, Goh KS, Devallois A, Philogène E, Bourgeois P (1998) Antimycobacterial activity of chemically defined natural substances from the Caribbean flora in Guadeloupe. FEMS Immunol Med Microbiol 20:267–273CrossRefGoogle Scholar
  77. Scherlach K, Boettger D, Remme N, Hertweck C (2010) The chemistry and biology of cytochalasans. Nat Prod Rep 27:869–886PubMedCrossRefGoogle Scholar
  78. Schümann J, Hertweck C (2007) Molecular basis of cytochalasan biosynthesis in fungi: gene cluster analysis and evidence for the involvement of a PKS-NRPS hybrid synthase by RNA silencing. J Am Chem Soc 129:9564–9565PubMedCrossRefGoogle Scholar
  79. Seeram NP, Francis LS, Needham OL, Jacobs H, McLean S, Reynolds WF (2003) Drimane and bisabolane sesquiterpenoids from Cinnamodendron corticosum (Canellaceae). Biochem Syst Ecol 6:637–640CrossRefGoogle Scholar
  80. Sekita S, Yoshihira K, Natori S, Kuwano H (1977) Chaetoglobosins G, and J, cytotoxic indol-3-yl [13]-cytochalasans from Chaetomium globosum. Tetrahedron Lett 32:2771–2774CrossRefGoogle Scholar
  81. Sekita S, Yoshihira K, Natori S, Kuwano H (1982) Chaetoglobosins, cytotoxic 10-(indol-3-yl)-[13]cytochalasans from Chaetomium spp. III. Sructures of chaetoglobosins C, E, F, G. J Chem Pharm Bull 30:1629–1638CrossRefGoogle Scholar
  82. Sekita S, Yoshihira K, Natori S, Kuwano H (1973) Structures of chaetoglobosin A and B, cytotoxic metabolites of Chaetomium globosum. Tetrahedron Lett 14:2109–2112CrossRefGoogle Scholar
  83. Sekita S, Yoshihira K, Natori S (1983) Chaetoglobosins, cytotoxic 10-(indol-3-yl)-[13] cytochalasans from Chaetomium spp. IV. 13C-nuclear magnetic resonance spectra and their application to a biosynthetic study. Chem Pharm Bull 31:490–498CrossRefGoogle Scholar
  84. Silva CA, Madureira LA (2012) Source correlation of biomarkers in a mangrove ecosystem on Santa Catarina Island in southern Brazil. An Acad Bras Ciênc 84:589–604PubMedCrossRefGoogle Scholar
  85. Springer JP, Cox RH, Cutler HG, Crumley FG (1980) The structure of chaetoglobosin K. Tetrahedron Lett 21:1905–1908CrossRefGoogle Scholar
  86. Singh SB, Goetz MA, Jones ET, Bills GF, Giacobbe RA, Herranz L, Stevens-Miles S, Williams DL (1995) Oteromycin: a novel antagonist of endothelin receptor. J Org Chem 60:7040–7042CrossRefGoogle Scholar
  87. Staunton J, Weissman KJ (2001) Polyketide biosynthesis: a millennium review. Nat Prod Rep 18:380–416PubMedCrossRefGoogle Scholar
  88. Suzuki S, Hosoe T, Nozawa K, Kawai KI, Yaguchi T, Udagawa SI (2000) Antifungal substances against pathogenic fungi, talaroconvolutins, from Talaromyces convolutus. J Nat Prod 63:768–772PubMedCrossRefGoogle Scholar
  89. Tabata N, Ohyama Y, Tomoda H, Abe T, Namikoshi M, Omura S (1999) Structure Elucidation of Roselipins, Inhibitors of Diacylglycerol Acyltransferase Produced by Gliodadium roseum KF-1040. J Antibiot 52:815–826PubMedCrossRefGoogle Scholar
  90. Takahashi C, Yoshihira K, Natori S, Umeda M (1976) The structures of toxic metabolites of Aspergillus candidus. I. The compounds A and E, cytotoxic p-terphenyls. Chem Pharm Bull 24:613–620PubMedCrossRefGoogle Scholar
  91. Thohinung S, Kanokmedhakul S, Kanokmedhakul K, Kukongviriyapan V, Tusskorn O, Soytong K (2010) Cytotoxic 10-(indol-3-yl)-[13] cytochalasans from the fungus Chaetomium elatum ChE01. Arch. Pharm. Res. 33(8):1135–1141PubMedCrossRefGoogle Scholar
  92. Tomoda H, Ohyama Y, Abe T, Tabata N, Namikoshi M, Yamaguchi Y, Masuma R, Omura S (1999) Roselipins, inhibitors of diacylglycerol acyltransferase, produced by Gliocladium roseum KF-1040. J Antibiot 52:689–694PubMedCrossRefGoogle Scholar
  93. Umeda M, Ohtsubo K, Saito M, Sekita S, Yoshihira K, Natori S, Udagawa S, Sakabe F, Kurata H (1975) Cytotoxicity of new cytochalasans from Chaetomium globosum. Experientia 31:435–438PubMedCrossRefGoogle Scholar
  94. Uosaki Y, Yoshida M, Ogawa T, Saitoh Y (1996) RES-1149-1 and-2, novel non-peptidic endothelin type b receptor antagonists produced by Aspergillm sp. J Antibiot 49:6–12PubMedCrossRefGoogle Scholar
  95. Velten R, Klostermeyer D, Steffan B, Steglich W, Kuschel A, Anke T (1994) The mniopetals, new inhibitors of reverse transcriptases from a Mniopetalum species (Basidiomycetes). J Antibiot 47:1017–1024PubMedCrossRefGoogle Scholar
  96. von Wallbrunn C, Luftmann H, Bergander K, Meinhardt F (2001) Phytotoxic chaetoglobosins are produced by the plant pathogen Calonectria morganii (anamorph Cylindrocladium scoparium). J Gen Appl Microbiol 47:33–38CrossRefGoogle Scholar
  97. Wang J, Huang Y, Fang M, Zhang Y, Zheng Z, Zhao Y, Su W (2002) Brefeldin A, a cytotoxin produced by Paecilomyces sp. and Aspergillus clavatus isolated from Taxus mairei and Torreya grandis. FEMS Imunol Med Mic 34:51–57CrossRefGoogle Scholar
  98. Wang CCC, Chiang YM, Kuo PL, Chang JK, Hsu YL (2008) Norsolorinic acid inhibits proliferation of T24 human bladder cancer cells by arresting the cell cycle at the G0/G1 phase and inducing a Fas/membrane-bound Fas ligand-mediated apoptotic pathway. Clini Exp Pharmacol Physiol 35:1301–1308CrossRefGoogle Scholar
  99. Weissman KJ, Leadlay PF (2005) Combinatorial biosynthesis of reduced polyketides. Nat Rev Microbiol 3:925–936PubMedCrossRefGoogle Scholar
  100. Wezeman T, Bräse S, Masters KS (2015) Xanthone dimers: a compound family which is both common and privileged. Nat Prod Rep 32:6–28PubMedCrossRefGoogle Scholar
  101. Wu G, Yu G, Kurtán T, Mándi A, Peng J, Mo X, Liu M, Li H, Sun X, Li J, Zhu T, Gu Q, Li D (2015) Versixanthones A–F, cytotoxic xanthone–chromanone dimers from the marine-derived fungus Aspergillus versicolor HDN1009. J Nat Prod 78:2691–2698PubMedCrossRefGoogle Scholar
  102. Yang YL, Lu CP, Chen MY, Chen KY, Wu YC, Wu SH (2007) Cytotoxic polyketides containing tetramic acid moieties isolated from the fungus Myceliophthora thermophila: elucidation of the relationship between cytotoxicity and stereoconfiguration. Chem Eur J 13:6985–6991PubMedCrossRefGoogle Scholar
  103. Yao Q, Wang J, Zhang X, Nong X, Xu X, Qi S (2014) Cytotoxic polyketides from the deep-sea-derived fungus Engyodontium album DFFSCS021. Mar Drugs 12:5902–5915PubMedPubMedCentralCrossRefGoogle Scholar
  104. Ying BP, Peiser GD, Ji YY, Mathias KM, Karasina F, Hwang YS (1995a) Structure-activity relationships of phytotoxic sesquiterpenoids from Canella winterana. J Agric Food Chem 43:826–829CrossRefGoogle Scholar
  105. Ying BP, Peiser G, Ji YY, Mathias K, Tutko D, Hwang YS (1995b) Phytotoxic sesquiterpenoids from Canella winterana. Phytochemistry 38:909–915CrossRefGoogle Scholar
  106. Zhang Y, Tian R, Liu S, Chen X, Liu X, Che Y (2008a) Alachalasins A-G, new cytochalasins from the fungus Stachybotrys charatum. Bioorg Med Chem 16:2627–2634PubMedCrossRefGoogle Scholar
  107. Zhang W, Krohn K, Flörke U, Pescitelli G, Di Bari L, Antus S, Kurtán T, Rheinheimer J, Draeger S, Schulz B (2008b) New mono‐and dimeric members of the Secalonic acid family: Blennolides A–G isolated from the fungus Blennoria sp. Chem Eur J 14:4913–4923CrossRefGoogle Scholar
  108. Zhang J, Ge HM, Jiao RH, Li J, Peng H, Wang YR, Wu JH, Song YC, Tan RX (2010) Cytotoxic chaetoglobosins from the endophyte Chaetomium globosum. Planta Med 76:1910–1914PubMedCrossRefGoogle Scholar
  109. Zhang Q, Li HQ, Zong SC, Gao JM, Zhang AL (2012) Chemical and bioactive diversities of the genus Chaetomium secondary metabolites. Mini-Rev Med Chem 12:127–148PubMedCrossRefGoogle Scholar
  110. Zhang D, Ge H, Xie D, Chen R, Zou JH, Tao X, Dai J (2013a) Periconiasins A-C, new cytotoxic cytochalasans with an unprecedented 9/6/5 tricyclic ring system from endophytic fungus Periconia sp. Org Lett 15:1674–1677PubMedCrossRefGoogle Scholar
  111. Zhang GZ, Wang FT, Qin JC, Wang D, Zhang JY, Zhang YH, Zhang SH, Pan HY (2013b) Efficacy assessment of antifungal metabolites from Chaetomium globosum No. 05, a new biocontrol agent, against Setosphaeria turcica. Biol Control 64:90–98CrossRefGoogle Scholar
  112. Zheng QC, Kong MZ, Zhao Q, Chen GD, Tian HY, Li XX, Guo LD, Li J, Zheng YZ, Gao H (2014) Chaetoglobosin Y, a new cytochalasan from Chaetomium globosum. Fitoterapia 93:126–131PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Hidayat Hussain
    • 1
    Email author
  • Barbara Schulz
    • 2
  • Ivan R. Green
    • 3
  1. 1.Department of Bioorganic ChemistryLeibniz Institute of Plant BiochemistryHalle (Salle)Germany
  2. 2.Institut für MikrobiologieTechnische Universität BraunschweigBrunswickGermany
  3. 3.Department of Chemistry and Polymer ScienceUniversity of StellenboschStellenboschSouth Africa

Personalised recommendations