Advertisement

Molecular Approaches to Explore Coastal Benthic Metazoan Diversity—Success and Constraints

  • Punyasloke BhaduryEmail author
Chapter
Part of the Sustainable Development and Biodiversity book series (SDEB, volume 24)

Abstract

Coastal environments are represented by rich biotopes and harbour diverse organismal groups, many of which are yet to be explored. The metazoan phyla found in the sediment of coastal environments are critical to ecosystem functioning. The abundance and diversity of benthic metazoan phyla such as the free-living marine nematodes in various coastal biotopes are not fully understood from the viewpoint of biodiversity. Molecular tools such as next-generation sequencing (NGS) approach offer a way to develop robust metabarcodes. Generation and processing of NGS data including metabarcode sequences involve computational understanding. Metabarcodes obtained using NGS platforms are providing improved understanding of biodiversity-rich sedimentary metazoan groups such as free-living marine nematodes. Some of these aspects in terms of NGS platforms, data processing and examples of application of NGS to explore benthic metazoan diversity with focus on free-living nematode communities have been discussed.

Keywords

Metazoa Free-living marine nematode Next-generation sequencing Metabarcoding Biodiversity 

References

  1. Adams MD, Celniker SE, Holt RA, Evans CA et al (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195CrossRefGoogle Scholar
  2. Bhadury P, Bik H, Lambshead JD, Austen MC, Smerdon GR, Rogers AD (2011) Molecular diversity of fungal phylotypes co-amplified alongside nematodes from coastal and deep-sea marine environments. PLoS ONE 6:e2644CrossRefGoogle Scholar
  3. Bik HM, Porazinska DL, Creer S, Caporaso JG, Knight R, Thomas WK (2012) Sequencing our way towards understanding global eukaryotic biodiversity. Trends Ecol Evol 27:233–243CrossRefGoogle Scholar
  4. Blaxter ML et al (2005) Defining operational taxonomic units using DNA barcode data. Philos Trans R Soc B Biol Sci 360:1935–1943CrossRefGoogle Scholar
  5. Bonilla-Rosso G, Souza V, Eguiarte LE (2008) Metagenómica, genómica y ecología molecular: la nueva ecología en el bicentenario de Darwin. TIP Revista Especializada en Ciencias Químico-Biológicas 11:41–51Google Scholar
  6. Boufahja F, Semprucci F, Beyrem H, Bhadury P (2015) Marine nematode taxonomy in Africa: promising prospects against scarcity of information. J Nematology 47:198–206 Google Scholar
  7. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD et al (2010) QIIME allows analysis of high throughput community sequencing data. Nat Methods 7:335–336CrossRefGoogle Scholar
  8. Chariton AA, Court LN, Hartley DM, Colloff MJ, Hardy CM (2010) Ecological assessment of estuarine sediments by pyrosequencing eukaryotic ribosomal DNA. Front Ecol Environ 8:233–238CrossRefGoogle Scholar
  9. Creer S, Fonseca VG, Porazinska DL, Giblin-Davis RM, Sung W, Power DM, Packer M, Carvalho GR, Blaxter ML, Lambshead PJD, Thomas WK (2010) Ultrasequencing of the meiofaunal biosphere: practice, pitfalls and promises. Mol Ecol 19:4–20CrossRefGoogle Scholar
  10. Danovaro R, Fraschetti S (2002) Meiofaunal vertical zonation on hard bottoms: comparison with soft-bottom meiofauna. Mar Ecol Progr Ser 230:159–169CrossRefGoogle Scholar
  11. del Campo J et al (2014) The others: our biased perspective of eukaryotic genomes. Trends Ecol Evol 29:252–259CrossRefGoogle Scholar
  12. Eguiarte LE, Aguirre-Liguori JA, Jardón-Barbolla L, Aguirre-Planter E, Souza V (2013) Genómica de poblaciones: nada en Evolución va a tener sentido si no es a la luz de la genómica, y nada en genómica tendrá sentido si no es a la luz de la evolución. TIP Revista Especializada En Ciencias Químico-Biológicas 16:42–56CrossRefGoogle Scholar
  13. Epp LS, Boessenkool S, Bellemain EP, Haile J, Esposito A et al (2012) New environmental metabarcodes for analysing soil DNA: potential for studying past and present ecosystems. Mol Ecol 21:1821–1833CrossRefGoogle Scholar
  14. Fonseca VG, Carvalho GR, Sung W, Johnson HF, Power DM, Neill SP, Packer M, Blaxter ML, Lambshead PJD, Thomas WK, Creer S (2010) Second-generation environmental sequencing unmasks marine metazoan biodiversity. Nat Comm.  https://doi.org/10.1038/ncomms1095CrossRefGoogle Scholar
  15. Ghosh A, Bhadury P (2019) Methods of assessment of microbial diversity in natural environments. In: Das S, Dash H (eds) Microbial diversity in the genomic era, Academic Press, p 770Google Scholar
  16. Giere O (2009) Meiobenthology: the microscopic motile fauna of aquatic sediments. Springer, HeidelbergGoogle Scholar
  17. Hao X, Jiang R, Chen T (2011) Clustering 16S rRNA for OTU prediction: a method of unsupervised Bayesian clustering. Bioinformatics 27:611–618CrossRefGoogle Scholar
  18. Hirai J, Tsuda A (2015) Metagenetic community analysis of epipelagic planktonic copepods in the tropical and subtropical Pacific. Mar Ecol Prog Ser 534:65–78. https://doi.org/10.3354/meps11404CrossRefGoogle Scholar
  19. Hirai J, Yasuike M, Fujiwara A, Nakamura Y, Hamaoka S, Katakura S et al (2015) Effects of plankton net characteristics on metagenetic community analysis of metazoan zooplankton in a coastal marine ecosystem. J Exp Mar Biol Ecol 469:36–43CrossRefGoogle Scholar
  20. Ibarra-Laclette E, Lyons E, Hernández-Guzmán G, Pérez-Torres CA, Carretero-Paulet L et al (2013) Architecture and evolution of a minute plant genome. Nature 498:94–98CrossRefGoogle Scholar
  21. Knowlton N (1993) Sibling species in the sea. Ann Rev Ecol Syst 24:189–216CrossRefGoogle Scholar
  22. Kim H, Kim H, Hwang H, Kim W (2017) Metagenomic analysis of the marine coastal invertebrates of South Korea as assessed by Ilumina MiSeq. Animal Cells Sys 21Google Scholar
  23. Lambshead PJD (2004) Marine nematode biodiversity. In: Chen ZX, Chen SY, Dickson DW (eds) Nematology: advances and perspectives, vol 1. CABI Publishing, Wallingford, pp 439–468Google Scholar
  24. Lallias D, Hiddink JG, Fonseca VG, Gaspar JM, Sung W, Neill SP, Barnes N, Ferrero T, Hall N, Lambshead PJD, Packer M, Kelley Thomas W, Creer S (2015) Environmental metabarcoding reveals heterogeneous drivers of microbial eukaryote diversity in contrasting estuarine ecosystems. ISME J 9:1208–1221CrossRefGoogle Scholar
  25. Lawton JH, Bignell DE, Bolton B et al (1998) Biodiversity inventories, indicator taxa and effects of habitat modification in tropical forest. Nature 391:72–76CrossRefGoogle Scholar
  26. Leray M, Knowlton N (2015) DNA barcoding and metabarcoding of standardized samples reveal patterns of marine benthic diversity. Proc Natl Acad Sci USA 112:2076–2081CrossRefGoogle Scholar
  27. Leray M, Knowlton N (2016) Censusing marine eukaryotic diversity in the twenty-first century. Phil Trans R Soc B 371:20150331CrossRefGoogle Scholar
  28. Liu L, Li Y, Li S, Hu N, He Y, Pong R, Lin D, Lu L, Law M (2012) Comparison of next-generation sequencing systems. J Biomed Biotechnol 2012:251364PubMedPubMedCentralGoogle Scholar
  29. López-Escardó D, Paps J, de Vargas C, Massana R, Ruiz-Trillo I, del Campo J (2018) Metabarcoding analysis on European coastal samples reveals new molecular metazoan diversity. Sci Rep 8:9106CrossRefGoogle Scholar
  30. Mahé F, Rognes T, Quince C, de Vargas C, Dunthorn M (2014) Swarm: robust and fast clustering method for amplicon-based studies. Peer J 2:e593CrossRefGoogle Scholar
  31. Mardis ER (2008) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 9:387–402CrossRefGoogle Scholar
  32. Mathee K, Narasimhan G, Valdes C, Qiu X, Matewish JM et al (2008) Dynamics of Pseudomonas aeruginosa genome evolution. Proc Natl Acad Sci USA 105:3100–3105CrossRefGoogle Scholar
  33. Pearman JK, Irigoien X (2015) Assessment of Zooplankton Community Composition along a Depth Profile in the Central Red Sea. PLoS ONE 10(7): e0133487. https://doi.org/10.1371/journal.pone.0133487 CrossRefGoogle Scholar
  34. Ratnasingham S, Hebert PDN (2007) BOLD: The Barcode of Life Data System. Mol Ecol Notes 7:355–364. http://www.barcodinglife.org
  35. Reeder J, Knight R (2010) Rapidly denoising pyrosequencing amplicon reads by exploiting rank-abundance distributions. Nat Methods 7:668–669CrossRefGoogle Scholar
  36. Riesenfeld CS, Schloss PD, Handelsman J (2004) Metagenomics: genomic analysis of microbial communities. Annu Rev Genet 38:525–552CrossRefGoogle Scholar
  37. Rothberg JM, Hinz W, Rearick TM, Schultz J, Mileski W et al (2011) An integrated semiconductor device enabling non-optical genome sequencing. Nature 475:348–352CrossRefGoogle Scholar
  38. Semprucci F, Losi V, Moreno M (2015) A review of Italian research on free-living marine nematodes and the future perspectives in their use as Ecological Indicators (EcoInd). Mediterr Mar Sci 16:352–365CrossRefGoogle Scholar
  39. Shokralla S, Spall JL, Gibson JF, Hajibabaei M (2012) Next-generation sequencing technologies for environmental DNA research. Mol Ecol 21:1794–1805CrossRefGoogle Scholar
  40. Taberlet P, Coissac E, Pompanon F, Brochmann C, Willerslev E (2012) Towards next generation biodiversity assessment using DNA metabarcoding. Mol Ecol 21:2045–2050CrossRefGoogle Scholar
  41. Thompson JF, Milos P (2011) The properties and applications of single-molecule DNA sequencing. Genome Biol 12:217–226CrossRefGoogle Scholar
  42. Thomsen PF, Willerslev E (2015) Environmental DNA—an emerging tool in conservation for monitoring past and present biodiversity. Biol Conserv 183:4–18CrossRefGoogle Scholar
  43. Yi X, Liang Y, Huerta-Sánchez E, Jin X, Xi Z et al (2010) Sequencing of 50 human exomes reveals adaptation to high altitude. Science 329:75–78CrossRefGoogle Scholar
  44. Yoccoz NG (2012) The future of environmental DNA in ecology. Mol Ecol 21:2031–2038CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Integrative Taxonomy and Microbial Ecology Research Group, Department of Biological Sciences & Centre for Climate and Environmental StudiesIndian Institute of Science Education and Research KolkataNadiaIndia

Personalised recommendations