Recent Land Surface Dynamics Across Drylands in Greater Central Asia

  • Geoffrey M. HenebryEmail author
  • Kirsten M. de Beurs
  • Ranjeet John
  • Braden C. Owsley
  • Jahan Kariyeva
  • Akylbek Chymyrov
  • Mirasil Mirzoev
Part of the Landscape Series book series (LAEC, volume 17)


We analyzed trends in and linkages between 16 years of MODIS land surface temperature data and 15 years of MODIS annual land cover data across drylands in Greater Central Asia and three subregions (Central Asia Core, Drylands East Asia, and Middle East) as well as 24 nations and administrative subunits. The spatial resolution of the analyses was 0.05°, roughly 5 km. We found that a large fraction of the drylands of Greater Central Asia has experienced significant changes in one or more aspects of the thermal regime. Significantly warmer nights were found in 19 of 24 political entities, where greater than 10% of their area was affected. However, these changes are distributed geographically in large patches without clear linkage to land cover type. These findings point to the need for further analysis using finer spatial resolution data to understand recent changes in the land surface dynamics across Greater Central Drylands.


Land surface temperature Diurnal temperature range Land cover variation Trend analysis 



This research was supported, in part, by NASA Science of Terra & Aqua project NNX14AJ32G entitled Change in our MIDST: Detection and analysis of land surface dynamics in North and South America using multiple sensor datastreams, by NASA’s Land-Cover and Land-Use Change project NNX15AP81G entitled How environmental change in Central Asian highlands impacts high elevation communities, and by the Center for Global Change and Earth Observations at Michigan State University. Any opinions, findings, and conclusions or recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of NASA.


  1. Abdullaev SF, Sokolik IN (2020) Assessment of the influence of dust storms on the cotton production in Tajikistan. In: Gutman G et al (eds) Landscape dynamics of drylands across greater Central Asia: people, societies and ecosystems. Springer, ChamGoogle Scholar
  2. Alemu WG, Henebry GM (2016) Characterizing cropland phenology in major grain production areas of Russia, Ukraine, and Kazakhstan by the synergistic use of passive microwave and visible to near infrared data. Remote Sens-Basel 8(12):1016CrossRefGoogle Scholar
  3. Alganci U, Ozdogan M, Sertel E, Ormeci C (2014) Estimating maize and cotton yield in southeastern Turkeywith integrated use of satellite images, meteorological data and digital photographs. Field Crop Res 157:8–19CrossRefGoogle Scholar
  4. Alward RD, Detling JK, Milchunas DG (1999) Grassland vegetation changes and nocturnal global warming. Science 283(5399):229–231PubMedCrossRefGoogle Scholar
  5. Anderson JR, Hardy EE, Roach JT, Witmer RE (1976) A land use and land cover classification system for use with remote sensor data: U.S. Geological Survey Professional Paper 964, 28 pGoogle Scholar
  6. Argüeso D, Evans JP, Pitman AJ, Di Luca A (2015) Effects of city expansion on heat stress under climate change conditions. PLoS One 10(2):e0117066PubMedCrossRefPubMedCentralGoogle Scholar
  7. Aslan ST, Gundogdu KS (2007) Mapping multi-year groundwater depth patterns from time-series analyses of seasonally lowest depth-to-groundwater maps in irrigation areas. Pol J Environ Stud 16(2):183–190Google Scholar
  8. Boryan C, Yang Z, Mueller R, Craig M (2011) Monitoring US Agriculture: the US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program. Geocarto Int 26(5):341–358CrossRefGoogle Scholar
  9. Bosworth J “An Anglo-Saxon Dictionary Online.” Trendan. (ed) Thomas Northcote Toller and Others. Comp. Sean Christ and Ondřej Tichý. Faculty of Arts, Charles University in Prague, 24 Aug 2010a. Web. 28 June 2017.
  10. Bosworth J “An Anglo-Saxon Dictionary Online.” Trinda. (ed) Thomas Northcote Toller and Others. Comp. Sean Christ and Ondřej Tichý. Faculty of Arts, Charles University in Prague, 21 Mar 2010b. Web. 28 June 2017.
  11. Braganza K, Karoly DJ, Arblaster JM (2004) Diurnal temperature range as an index of global climate change during the twentieth century. Geophys Rese Lett 31(13) Google Scholar
  12. Brovelli M, Molinari M, Hussein E et al (2015) The first comprehensive accuracy assessment of GlobeLand30 at a national level: Methodology and results. Remote Sens-Basel 7(4):4191–4212CrossRefGoogle Scholar
  13. Brown de Colstoun EC, Story MH et al (2003) National Park vegetation mapping using multitemporal Landsat 7 data and a decision tree classifier. Remote Sens Environ 85(3):316–327CrossRefGoogle Scholar
  14. Büttner G, Feranec J, Jaffrain G et al (2004) The CORINE land cover 2000 project. EARSeL eProceedings 3(3):331–346Google Scholar
  15. Chen J, Chen J, Liao A et al (2015) Global land cover mapping at 30 m resolution: A POK-based operational approach. ISPRS J Photogramm 103:7–27CrossRefGoogle Scholar
  16. Chen X, Wang S, Hu Z et al (2018) Spatiotemporal characteristics of seasonal precipitation and their relationships with ENSO in Central Asia during 1901–2013. J Geogr Sci 28(9):1341–1368CrossRefGoogle Scholar
  17. Chen J, Ouyang Z, John R et al (2020) Social-ecological systems across the Eurasian drylands. In: Gutman G et al (eds) Landscape dynamics of drylands across greater Central Asia: people, societies and ecosystems. Springer, ChamGoogle Scholar
  18. Chymyrov A, Betz F, Baibagyshov E et al (2018) Floodplain forest mapping with sentinel-2 imagery: case study of Naryn River, Kyrgyzstan. In: Vegetation of Central Asia and Environs. Springer, Cham, pp 335–347CrossRefGoogle Scholar
  19. Dai A, Trenberth KE, Karl TR (1999) Effects of clouds, soil moisture, precipitation, and water vapor on diurnal temperature range. J Clim 12(8):2451–2473CrossRefGoogle Scholar
  20. de Beurs KM, Henebry GM (2004) Trend analysis of the Pathfinder AVHRR Land (PAL) NDVI data for the deserts of Central Asia. IEEE Geosci Remote S 1(4):282–286CrossRefGoogle Scholar
  21. de Beurs KM, Henebry GM (2008) Northern annular mode effects on the land surface phenologies of northern Eurasia. J Clim 21(17):4257–4279CrossRefGoogle Scholar
  22. de Beurs KM, Henebry GM (2013) Vegetation phenology in global change studies. In: Phenology: an integrative environmental science. Springer, Dordrecht, pp 483–502CrossRefGoogle Scholar
  23. de Beurs KM, Wright CK, Henebry GM (2009) Dual scale trend analysis for evaluating climatic and anthropogenic effects on the vegetated land surface in Russia and Kazakhstan. Environ Res Lett 4(4):045012CrossRefGoogle Scholar
  24. de Beurs KM, Henebry GM, Owsley BC, Sokolik I (2015) Using multiple remote sensing perspectives to identify and attribute land surface dynamics in Central Asia 2001–2013. Remote Sens Environ 170:48–61CrossRefGoogle Scholar
  25. de Beurs KM, Henebry GM, Owsley B, Sokolik IN (2018) Large scale climate oscillation impacts on temperature, precipitation and land surface phenology in Central Asia. Environ Res Lett 13(6):065018CrossRefGoogle Scholar
  26. Ellis EC, Ramankutty N (2008) Putting people in the map: Anthropogenic biomes of the world. Front Ecol Environ 6(8):439–447CrossRefGoogle Scholar
  27. Fan P, Ouyang Z, Chen J et al (2020) Population and urban dynamics in drylands of China. In: Gutman G et al (eds) Landscape dynamics of drylands across greater Central Asia: people, societies and ecosystems. Springer, ChamGoogle Scholar
  28. Feranec J, Jaffrain G, Soukup T, Hazeu G (2010) Determining changes and flows in European landscapes 1990–2000 using CORINE land cover data. Appl Geogr 30(1):19–35CrossRefGoogle Scholar
  29. Friis C, Nielsen JØ, Otero I et al (2016) From teleconnection to telecoupling: taking stock of an emerging framework in land system science. J Land Use Sci 11(2):131–153CrossRefGoogle Scholar
  30. Gallo KP, Owen TW, Easterling DR, Jamason PF (1999) Temperature trends of the US historical climatology network based on satellite-designated land use/land cover. J Clim 12(5):1344–1348CrossRefGoogle Scholar
  31. Groisman P, Bulygina O, Henebry G et al (2018) Dryland belt of Northern Eurasia: contemporary environmental changes and their consequences. Environ Res Lett 13(11):115008CrossRefGoogle Scholar
  32. Groisman PY, Bulygina ON, Henebry GM et al (2020) Eurasian drylands: contemporary environmental changes. In: Gutman G et al (eds) Landscape dynamics of drylands across greater Central Asia: people, societies and ecosystems. Springer, ChamGoogle Scholar
  33. Henebry GM (2019) Methodology II: remote sensing of change in grasslands. In: Gibson DJ, Newman J, (eds) Grasslands and climate change. Cambridge University Press, pp 40–64Google Scholar
  34. Henebry GM, de Beurs KM, Wright CK, John R et al (2013) Dryland East Asia in hemispheric context. In: Chen J, Wan S, Henebry G, Qi J, Gutman G, Sun G, Kappas M (eds) Dryland East Asia: land dynamics amid social and climate change. HEP/De Gruyter, Berlin, pp 23–44Google Scholar
  35. Henebry GM, Chen J, Gutman G, Kappas M (2020) Multiple perspectives on drylands across Greater Central Asia. In: Gutman G et al (eds) Landscape dynamics of drylands across greater Central Asia: people, societies and ecosystems. Springer, ChamGoogle Scholar
  36. Hijioka Y, Lin E, Pereira JJ et al (2014) Asia. In: Climate change 2014 – impacts, adaptation and vulnerability: part B: regional aspects: Working Group II Contribution to the IPCC fifth assessment report. Cambridge University Press, Cambridge, pp 1327–1370Google Scholar
  37. Homer C, Dewitz J, Fry J et al (2007) Completion of the 2001 national land cover database for the conterminous United States. Photogramm Eng Remote Sensing 73(4):337Google Scholar
  38. Homer C, Dewitz J, Yang L et al (2015) Completion of the 2011 National Land Cover Database for the conterminous United States–representing a decade of land cover change information. Photogramm Eng Rem S 81(5):345–354Google Scholar
  39. Hu Z, Zhou Q, Chen X, Qian C et al (2017) Variations and changes of annual precipitation in Central Asia over the last century. Int J Climatol 37:157–170CrossRefGoogle Scholar
  40. Johnson DM, Mueller R (2010) The 2009 Cropland data layer. Photogramm Eng Rem S 76(11):1201–1205Google Scholar
  41. Kappas M, Degener J, Klinge M, Vitkovskaya I et al (2020) A conceptual framework for ecosystem stewardship based on landscape dynamics: case studies from Kazakhstan and Mongolia. In: Gutman G et al (eds) Landscape dynamics of drylands across greater Central Asia: people, societies and ecosystems. Springer, ChamGoogle Scholar
  42. Kariyeva J and van Leeuwen W (2011) Environmental drivers of NDVI-based vegetation dynamics in Central Asia. Remote Sens-Basel 3(2):203–246Google Scholar
  43. Kariyeva J and van Leeuwen W (2012) Phenological dynamics of irrigated and natural drylands in Central Asia before and after the USSR collapse. Agric Ecosyst Environ 162:77–89Google Scholar
  44. Kariyeva J, van Leeuwen W and Woodhouse C (2012) Impacts of climate gradients on the vegetation phenology of major land use types in Central Asia (1981–2008). Front Earth Sci 6(2): 206–225Google Scholar
  45. Karl TR, Jones PD, Knight RW et al (1993) A new perspective on recent global warming: asymmetric trends of daily maximum and minimum temperature. Bull Am Meteorol Soc 74(6):1007–1024CrossRefGoogle Scholar
  46. Kelley CP, Mohtadi S, Cane MA et al (2015) Climate change in the Fertile Crescent and implications of the recent Syrian drought. Proc Natl Acad Sci 112(11):3241–3246PubMedCrossRefPubMedCentralGoogle Scholar
  47. Kelley C, Mohtadi S, Cane M et al (2017) Commentary on the Syria case: Climate as a contributing factor. Polit Geogr 30:1–3Google Scholar
  48. Laiskhanov SU, Otarov A, Savin IY et al (2016) Dynamics of soil salinity in irrigation areas in South Kazakhstan. Pol J Environ Stud 25(6):2649–2475CrossRefGoogle Scholar
  49. Liu J, Hull V, Moran E, Nagendra H et al (2014) Applications of the telecoupling framework to land-change science. In: Rethinking global land use in an urban era. MIT Press, Cambridge, MA, pp 119–140CrossRefGoogle Scholar
  50. Loveland TR, Merchant JW, Ohlen DO, Brown JF (1991) Development of a land-cover characteristics database for the conterminous US. Photogramm Eng Remote Sensing 57(11):1453–1463Google Scholar
  51. Loveland TR, Reed BC, Brown JF et al (2000) Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int J Remote Sens 21(6–7):1303–1330CrossRefGoogle Scholar
  52. Mariotti A (2007) How ENSO impacts precipitation in southwest central Asia. Geophys Res Lett 34(16) Google Scholar
  53. Meyfroidt P, Lambin EF (2009) Forest transition in Vietnam and displacement of deforestation abroad. Proc Natl Acad Sci 106(38):16139–16144PubMedCrossRefPubMedCentralGoogle Scholar
  54. Meyfroidt P, Rudel TK, Lambin EF (2010) Forest transitions, trade, and the global displacement of land use. Proc Natl Acad Sci 107(49):20917–20922PubMedCrossRefPubMedCentralGoogle Scholar
  55. Oleson KW, Monaghan A, Wilhelmi O et al (2015) Interactions between urbanization, heat stress, and climate change. Clim Chang 129(3–4):525–541CrossRefGoogle Scholar
  56. Ozdogan M, Salvucci GD (2004) Irrigation-induced changes in potential evapotranspiration in southeastern Turkey: Test and application of Bouchet’s complementary hypothesis. Water Resour Res 40(4)Google Scholar
  57. Peng S, Piao S, Ciais P et al (2013) Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation. Nature 501(7465):88–92PubMedCrossRefPubMedCentralGoogle Scholar
  58. Prasad PVV, Pisipati SR, Ristic Z et al (2008) Impact of nighttime temperature on physiology and growth of spring wheat. Crop Sci 48(6):2372–2380CrossRefGoogle Scholar
  59. Qi J, Kulmatov R, Bubochova T et al (2020) The complexity and challenges of water-energy-food systems in Central Asia. In: Gutman G et al (eds) Landscape dynamics of drylands across greater Central Asia: people, societies and ecosystems. Springer, ChamGoogle Scholar
  60. Reyer CP, Otto IM, Adams S et al (2017) Climate change impacts in Central Asia and their implications for development. Reg Environ Chang 17(6):1639–1650CrossRefGoogle Scholar
  61. Selby J, Dahi OS, Fröhlich C, Hulme M (2017a) Climate change and the Syrian civil war revisited. Polit Geogr 60:232–244CrossRefGoogle Scholar
  62. Selby J, Dahi O, Fröhlich C, Hulme M (2017b) Climate change and the Syrian civil war revisited: A rejoinder. Polit Geogr 60:253–255CrossRefGoogle Scholar
  63. Sillmann J, Kharin VV, Zwiers FW et al (2013) Climate extremes indices in the CMIP5 multimodel ensemble: part 2. Future climate projections. J Geophys Res-Atmos 118(6):2473–2493CrossRefGoogle Scholar
  64. Spaeth KE, Weltz MA, Guertin DP et al (2020) Hydrology and erosion risk parameters for grasslands in Central Asia. In: Gutman G et al (eds) Landscape dynamics of drylands across greater Central Asia: people, societies and ecosystems. Springer, ChamGoogle Scholar
  65. Still CJ, Pau S, Edwards EJ (2014) Land surface skin temperature captures thermal environments of C3 and C4 grasses. Glob Ecol Biogeogr 23(3):286–296CrossRefGoogle Scholar
  66. Sulla-Menashe D, Gray JM, Abercrombie SP, Friedl MA (2019) Hierarchical mapping of annual global land cover 2001 to present: the MODIS Collection 6 Land Cover product. Remote Sens Environ 222:183–194CrossRefGoogle Scholar
  67. Sun D, Pinker RT and Kafatos M (2006a) Diurnal temperature range over the United States: a satellite view. Geophys Res Lett 33(5)Google Scholar
  68. Sun D, Kafatos M, Pinker RT, Easterling DR (2006b) Seasonal variations in diurnal temperature range from satellites and surface observations. IEEE Trans Geosci Remote Sens 44(10):2779–2785CrossRefGoogle Scholar
  69. Sun B, Chen X, Zhou Q (2016) Uncertainty assessment of GlobeLand30 land cover data set over central Asia. Int Arch Photogramm Remote Sens Spat Inf Sci 8:1313–1317CrossRefGoogle Scholar
  70. Sun J, Tong YX, Liu J (2017) Telecoupled land-use changes in distant countries. J Integr Agric 16(2):368–376CrossRefGoogle Scholar
  71. “tend, v.2”. OED Online. 2017. Oxford University Press. Accessed 28 June 2017
  72. “trend, v.”. OED Online. 2017. Oxford University Press. Accessed 28 June 2017
  73. Trigo RM, Gouveia CM, Barriopedro D (2010) The intense 2007–2009 drought in the Fertile Crescent: impacts and associated atmospheric circulation. Agric For Meteorol 150(9):1245–1257CrossRefGoogle Scholar
  74. Vogelmann JE, Howard SM, Yang L et al (2001) Completion of the 1990s National Land Cover Data Set for the conterminous United States from Landsat Thematic Mapper data and ancillary data sources. Photogramm Eng Remote Sensing 67(6)Google Scholar
  75. Wan S, Xia J, Liu W, Niu S (2009) Photosynthetic overcompensation under nocturnal warming enhances grassland carbon sequestration. Ecology 90(10):2700–2710PubMedCrossRefGoogle Scholar
  76. Wang Y, Zhang J, Liu D et al (2018) Accuracy assessment of GlobeLand30 2010 land cover over China based on geographically and categorically stratified validation sample data. Remote Sens 10(8):1213CrossRefGoogle Scholar
  77. Wickham JD, Stehman SV, Gass L et al (2013) Accuracy assessment of NLCD 2006 land cover and impervious surface. Remote Sens Environ 130:294–304CrossRefGoogle Scholar
  78. Wickham J, Stehman SV, Gass L et al (2017) Thematic accuracy assessment of the 2011 national land cover database (NLCD). Remote Sens Environ 191:328–341PubMedCrossRefPubMedCentralGoogle Scholar
  79. Wright CK, de Beurs KM, Akhmadieva ZK et al (2009) Reanalysis data underestimate significant changes in growing season weather in Kazakhstan. Environ Res Lett 4(4):045020Google Scholar
  80. Wright CK, de Beurs KM and Henebry GM (2012) Combined analysis of land cover change and NDVI trends in the Northern Eurasian grain belt. Front Earth Science 6(2):177–187Google Scholar
  81. Wright CK, de Beurs KM, Henebry GM (2014) Land surface anomalies preceding the 2010 Russian heat wave and a link to the North Atlantic oscillation. Environ Res Lett 9(12):124015CrossRefGoogle Scholar
  82. Xia J, Han Y, Zhang Z, Wan S (2009) Effects of diurnal warming on soil respiration are not equal to the summed effects of day and night warming in a temperate steppe. Biogeosciences 6(8):1361–1370CrossRefGoogle Scholar
  83. Xia J, Chen J, Piao S et al (2014) Terrestrial carbon cycle affected by non-uniform climate warming. Nat Geosci 7(3):173–180CrossRefGoogle Scholar
  84. Yu X, Zhao Y, Ma X et al (2018) Projected changes in the annual cycle of precipitation over central Asia by CMIP5 models. Int J Climatol 38(15):5589–5604CrossRefGoogle Scholar
  85. Zhang N, Xia J, Yu X et al (2011) Soil microbial community changes and their linkages with ecosystem carbon exchange under asymmetrically diurnal warming. Soil Biol Biochem 43(10):2053–2059Google Scholar
  86. Zhang M, Chen Y, Shen Y, Li B (2019) Tracking climate change in Central Asia through temperature and precipitation extremes. J Geogr Sci 29(1):3–28CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Geoffrey M. Henebry
    • 1
    Email author
  • Kirsten M. de Beurs
    • 2
  • Ranjeet John
    • 3
  • Braden C. Owsley
    • 2
  • Jahan Kariyeva
    • 4
  • Akylbek Chymyrov
    • 5
  • Mirasil Mirzoev
    • 6
  1. 1.Department of Geography, Environment, and Spatial SciencesMichigan State UniversityEast LansingUSA
  2. 2.Department of Geography and Environmental SustainabilityUniversity of OklahomaNormanUSA
  3. 3.Department of BiologyUniversity of South DakotaVermillionUSA
  4. 4.Alberta Biodiversity Monitoring InstituteUniversity of AlbertaEdmontonCanada
  5. 5.Department of Geodesy and GeoinformaticsKyrgyz State University of Construction, Transport and ArchitectureBishkekKyrgyzstan
  6. 6.Hydromelioration FacultyTajik Agrarian UniversityDushanbeTajikistan

Personalised recommendations