Advertisement

Enabling Scalable Multifluid Plasma Simulations Through Block Preconditioning

  • Edward G. PhillipsEmail author
  • John N. Shadid
  • Eric C. Cyr
  • Sean T. Miller
Chapter
  • 102 Downloads
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 132)

Abstract

Recent work has demonstrated that block preconditioning can scalably accelerate the performance of iterative solvers applied to linear systems arising in implicit multiphysics PDE simulations. The idea of block preconditioning is to decompose the system matrix into physical sub-blocks and apply individual specialized scalable solvers to each sub-block. It can be advantageous to block into simpler segregated physics systems or to block by discretization type. This strategy is particularly amenable to multiphysics systems in which existing solvers, such as multilevel methods, can be leveraged for component physics and to problems with disparate discretizations in which scalable monolithic solvers are rare. This work extends our recent work on scalable block preconditioning methods for structure-preserving discretizatons of the Maxwell equations and our previous work in MHD system solvers to the context of multifluid electromagnetic plasma systems. We argue how a block preconditioner can address both the disparate discretization, as well as strongly-coupled off-diagonal physics that produces fast time-scales (e.g. plasma and cyclotron frequencies). We propose a block preconditioner for plasma systems that allows reuse of existing multigrid solvers for different degrees of freedom while capturing important couplings, and demonstrate the algorithmic scalability of this approach at time-scales of interest.

Keywords

Multiphysics Block preconditioning Mixed discretizations 

References

  1. 1.
    Adler, J., Benson, T.R., Cyr, E., MacLachlan, S.P., Tuminaro, R.S.: Monolithic multigrid methods for two-dimensional resistive magnetohydrodynamics. SIAM J. Sci. Comput. 38(1), B1–B24 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Adler, J., Hu, X., Zikatanov, L.: Robust solvers for Maxwell’s equations with dissipative boundary conditions. SIAM J. Sci. Comput. 39(5), S3–S23 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Badia, S., Martín, A., Planas, R.: Block recursive LU preconditioners for the thermally coupled incompressible inductionless MHD problem. J. Comput. Phys. 274, 562–591 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Benzi, M., Olshanskii, M.: An augmented Lagrangian-based approach to the Oseen problem. SIAM J. Sci. Comput. 28, 2095–2113 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Benzi, M., Olshanskii, M., Wang, Z.: Modified augmented lagrangian preconditioners for the incompressible navier-stokes equations. Int. J. Numer. Meth. Fluids 66, 486–508 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Bittencourt, J.: Fundamentals of Plasma Physics. Springer, Berlin (2004)zbMATHCrossRefGoogle Scholar
  7. 7.
    Bochev, P., Hu, J., Siefert, C., Tuminaro, R.: An algebraic multigrid approach based on a compatible gauge reformulation of Maxwell’s equations. SIAM J. Sci. Comput. 31, 557–583 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Bonoli, P., Curfman McInnes, L.: Report on workshop of the integrated simulations for magnetic fusion energy science. Technical report, DOE Office of Science ASCR and DOE Office of Fusion Energy Sciences (2015)Google Scholar
  9. 9.
    Chacón, L.: An optimal, parallel, fully implicit Newton-Krylov solver for three-dimensional viscoresistive magnetohydrodynamics. Phys. Plasmas 15, 056103 (2008)CrossRefGoogle Scholar
  10. 10.
    Chacón, L.: Scalable parallel implicit solvers for 3D magnetohydrodynamics. J. Phys. Conf. Ser. 125, 012041 (2008)CrossRefGoogle Scholar
  11. 11.
    Cyr, E.C., Shadid, J., Tuminaro, R., Pawlowski, R., Chacón, L.: A new approximate block factorization preconditioner for 2D incompressible (reduced) resistive MHD. SIAM J. Sci. Comput. 35, B701–B730 (2013)zbMATHCrossRefGoogle Scholar
  12. 12.
    Cyr, E.C., Shadid, J.N., Tuminaro, R.S.: Teko: a block preconditioning capability with concrete example applications in Navier-Stokes and MHD. SIAM J. Sci. Comput. 38(5), S307–S331 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Elman, H., Howle, V., Shadid, J., Shuttleworth, R., Tuminaro, R.: A taxonomy and comparison of parallel block multi-level preconditioners for the incompressible Navier-Stokes equations. J. Comput. Phys. 227, 1790–1808 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Gee, M., Siefert, C., Hu, J., Tuminaro, R., Sala, M.: ML 5.0 smoother aggregration user’s guide. Technical Report SAND2006-2649, Sandia National Laboratories (2006)Google Scholar
  15. 15.
    Greif, C., Schötzau, D.: Preconditioners for the discretized time-harmonic Maxwell equations in mixed form. Numer. Linear Algebra Appl. 14, 281–297 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Hakim, A.: Extended MHD modelling with the ten-moment equations. J. Fusion Energ. 27, 36–43 (2008)CrossRefGoogle Scholar
  17. 17.
    Heroux, M., Bartlett, R., Howle, V., Hoekstra, R., Hu, J., Kolda, T., Lehoucq, R., Long, K., Pawlowski, R., Phipps, E., Salinger, A., Thornquist, H., Tuminaro, R., Willenbring, J., Williams, A., Stanley, K.: An overview of the Trilinos project. ACM Trans. Math. Softw. 31, 397–423 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Hiptmair, R., Xu, J.: Nodal auxiliary space preconditioning in H(Curl) and H(Div) spaces. SIAM J. Numer. Anal. 45, 2483–2509 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Hu, J., Tuminaro, R., Bochev, P., Garasi, C., Robinson, A.: Toward an h-independent algebraic multigrid method for Maxwell’s equations. SIAM J. Sci. Comput. 27, 1669–1688 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Hu, K., Ma, Y., Xu, J.: Stable finite element methods preserving ∇⋅ B = 0 exactly for MHD models. Numer. Math. (2016). https://doi.org/10.1007/s00211-016-0803-4 MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Hutchinson, S., Prevost, L., Shadid, J.N., Tong, C., Tuminaro, R.S.: Aztec user’s guide version 2.0. Technical Report Sand99-8801J, Sandia National Laboratories (1999)Google Scholar
  22. 22.
    Kolev, T., Vassilevski, P.: Parallel auxiliary space AMG for H(curl) problems. J. Comput. Math. 27(5), 604–623 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Kolev, T., Pasciak, J., Vassilevski, P.: H(curl) auxiliary mesh preconditioning. Numer. Linear Algebra Appl. 15, 455–471 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Kumar, H., Mishra, S.: Entropy stable numerical schemes for two-fluid plasma equations. J. Sci. Comput. 52, 401–425 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Lin, P., Shadid, J., Tuminaro, R., Sala, M., Hennigan, G., Pawlowski, R.: A parallel fully-coupled algebraic multilevel preconditioner applied to multiphysics PDE applications: drift-diffusion, flow/transport/reaction, resistive MHD. Int. J. Numer. Meth. Fluids 64, 1148–1179 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Ma, Y., Hu, K., Hu, X., Xu, J.: Robust preconditioners for incompressible MHD models. J. Comp. Phys. 316, 721–746 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Monk, P.: Finite Element Methods for Maxwell’s Equations. Oxford University Press, Oxford (2003)zbMATHCrossRefGoogle Scholar
  28. 28.
    Nédélec, J.-C.: Mixed finite elements in \(\mathbb {R}^3\). Numer. Math. 35, 315–341 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Nédélec, J.-C.: A new family of mixed finite elements in \(\mathbb {R}^3\). Numer. Math. 50, 57–81 (1986)Google Scholar
  30. 30.
    Phillips, E., Elman, H., Cyr, E.C., Shadid, J., Pawlowski, R.: A block preconditioner for an exact penalty formulation for stationary MHD. SIAM J. Sci. Comput. 36, B930–B951 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Phillips, E., Shadid, J., Cyr, E., Elman, H., Pawlowski, R.: Block preconditioners for stable mixed nodal and edge finite element representations of incompressible resistive MHD. SIAM J. Sci. Comput. 38, B1009–B1031 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Phillips, E., Shadid, J., Cyr, E.: Scalable preconditioners for structure preserving discretizations of Maxwell equations in first order form. SIAM J. Sci. Comput. 40(3), B723–B742 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Raviart, P., Thomas, J.: A mixed finite element method for second order elliptic problems. Lect. Notes Math. 606, 292–315 (1977)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Shadid, J., Pawlowski, R., Banks, J., Chacón, L., Lin, P., Tuminaro, R.: Towards a scalable fully-implicit fully-coupled resistive MHD formulation with stabilized FE methods. J. Comput. Phys. 229, 7649–7671 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Shadid, J.N., Pawlowski, R.P., Cyr, E.C., Tuminaro, R.S., Chacon, L., Weber, P.D.: Scalable implicit incompressible resistive MHD with stabilized FE and fully-coupled Newton-Krylov-AMG. Comput. Methods Appl. Mech. Eng. 304, 1–25 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Shumlak, U., Loverich, J.: Approximate Riemann solver for the two-fluid plasma model. J. Comp. Phys. 187, 620–638 (2003)zbMATHCrossRefGoogle Scholar
  37. 37.
    Wathen, A.: Realistic eigenvalue bounds for the Galerkin mass matrix. IMA J. Numer. Anal. 7, 449–457 (1987)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Edward G. Phillips
    • 1
    Email author
  • John N. Shadid
    • 2
  • Eric C. Cyr
    • 2
  • Sean T. Miller
    • 2
  1. 1.Plasma Theory and Simulation DepartmentSandia National LaboratoriesAlbuquerqueUSA
  2. 2.Center for Computing ResearchSandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations