Density-Based Inverse Homogenization with Anisotropically Adapted Elements

  • Nicola FerroEmail author
  • Stefano Micheletti
  • Simona Perotto
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 132)


The optimization of manufacturable extremal elastic materials can be carried out via topology optimization using the homogenization method. We combine here a standard density-based inverse homogenization technique with an anisotropic mesh adaptation procedure in the context of a finite element discretization. In this way, the optimized layouts are intrinsically smooth and ready to be manufactured.


Topology optimization Inverse homogenization Metamaterials SIMP method Anisotropic mesh adaptation Finite elements 


  1. 1.
    Andreassen, E., Andreasen, C.S.: How to determine composite material properties using numerical homogenization. Comput. Mater. Sci. 83, 488–495 (2014)CrossRefGoogle Scholar
  2. 2.
    Bendsøe, M.P., Sigmund, O.: Topology Optimization – Theory, Methods and Applications. Springer, Berlin (2003)Google Scholar
  3. 3.
    Bensoussan, A., Lions, J.L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures. AMS Chelsea Publishing, Providence (2011)zbMATHGoogle Scholar
  4. 4.
    Bertsekas, D.P.: Constrained Optimization and Lagrange Multiplier Methods. Computer Science and Applied Mathematics. Academic, New York (1982)zbMATHGoogle Scholar
  5. 5.
    Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext. Springer, New York (2011)zbMATHGoogle Scholar
  6. 6.
    Chung, P.W., Tamma, K.K., Namburu, R.R.: Homogenization of temperature-dependent thermal conductivity in composite materials. J. Thermophys. Heat Transf. 15(1), 10–17 (2001)CrossRefGoogle Scholar
  7. 7.
    Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)zbMATHGoogle Scholar
  8. 8.
    Curtis, F.E., Schenk, O., Wächter, A.: An interior-point algorithm for large-scale nonlinear optimization with inexact step computations. SIAM J. Sci. Comput. 32(6), 3447–3475 (2010)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Farrell, P.E., Micheletti, S., Perotto, S.: An anisotropic Zienkiewicz-Zhu-type error estimator for 3D applications. Int. J. Numer. Methods Eng. 85(6), 671–692 (2011)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Frey, P.J., George, P.L.: Mesh Generation: Application to Finite Elements. Wiley, Hoboken (2008)CrossRefGoogle Scholar
  11. 11.
    Gould, P.L.: Introduction to Linear Elasticity. Springer, Paris (1994)CrossRefGoogle Scholar
  12. 12.
    Hashin, Z., Shtrikman, S.: A variational approach to the theory of the effective magnetic permeability of multiphase materials. J. Appl. Phys. 33(10), 3125–3131 (1962)CrossRefGoogle Scholar
  13. 13.
    Hecht, F.: New development in freefem++. J. Numer. Math. 20(3–4), 251–266 (2012)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Larsen, U.D., Signund, O., Bouwsta, S.: Design and fabrication of compliant micromechanisms and structures with negative Poisson’s ratio. J. Microelectron. Syst. 6(2), 99–106 (1997)CrossRefGoogle Scholar
  15. 15.
    Lazarov, B.S., Sigmund, O.: Filters in topology optimization based on Helmholtz-type differential equations. Int. J. Numer. Methods Eng. 86(6), 765–781 (2011)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Micheletti, S., Perotto, S.: Anisotropic adaptation via a Zienkiewicz–Zhu error estimator for 2D elliptic problems. In: Kreiss, G., Lötstedt, P., Målqvist, A., Neytcheva, M. (eds.), Numerical Mathematics and Advanced Applications, pp. 645–653. Springer, Berlin (2010)Google Scholar
  17. 17.
    Micheletti, S., Perotto, S., Farrell, P.E.: A recovery-based error estimator for anisotropic mesh adaptation in CFD. Bol. Soc. Esp. Mat. Apl. SeMA 50, 115–137 (2010)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Micheletti, S., Perotto, S., Soli, L.: Ottimizzazione topologica adattativa per la fabbricazione stratificata additiva (2017). Italian patent application No. 102016000118131, filed on November 22, 2016 (extended as Adaptive topology optimization for additive layer manufacturing, International patent application PCT No. PCT/IB2017/057323)Google Scholar
  19. 19.
    Neves, M.M., Rodrigues, H., Guedes, J.M.: Optimal design of periodic linear elastic microstructures. Comput. Struct. 76(1–3), 421–429 (2000)CrossRefGoogle Scholar
  20. 20.
    Sánchez-Palencia, E.: Homogenization Method for the Study of Composite Media. In: Asymptotic Analysis, II. Lecture Notes in Mathematics, vol. 985, pp. 192–214. Springer, Berlin (1983)Google Scholar
  21. 21.
    Sigmund, O.: Design of Material Structures Using Topology Optimization. Technical University of Denmark, Lyngby (1994)Google Scholar
  22. 22.
    Sigmund, O.: Materials with prescribed constitutive parameters: an inverse homogenization problem. Int. J. Solids Struct. 31(17), 2313–2329 (1994)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Sigmund, O., Petersson, J.: Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct. Multidiscip. Optim. 16(1), 68–75 (1998)CrossRefGoogle Scholar
  24. 24.
    Yin, L., Ananthasuresh, G.: Topology optimization of compliant mechanisms with multiple materials using a peak function material interpolation scheme. Struct. Multidiscip. Optim. 23(1), 49–62 (2001)CrossRefGoogle Scholar
  25. 25.
    Zienkiewicz, O.C., Zhu, J.Z.: A simple error estimator and adaptive procedure for practical engineering analysis. Int. J. Numer. Methods Eng. 24(2), 337–357 (1987)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Zuo, W., Saitou, K.: Multi-material topology optimization using ordered SIMP interpolation. Struct. Multidiscip. Optim. 55(2), 477–491 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Nicola Ferro
    • 1
    Email author
  • Stefano Micheletti
    • 1
  • Simona Perotto
    • 1
  1. 1.MOX, Dipartimento di MatematicaPolitecnico di MilanoMilanoItaly

Personalised recommendations