Advertisement

Thermomechanically-Consistent Phase-Field Modeling of Thin Film Flows

  • Christopher Miles
  • Kristoffer G. van der ZeeEmail author
  • Matthew E. Hubbard
  • Roderick MacKenzie
Chapter
  • 91 Downloads
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 132)

Abstract

We use phase-field techniques coupled with a Coleman–Noll type procedure to derive a family of thermomechanically consistent models for predicting the evolution of a non-volatile thin liquid film on a flat substrate starting from mass conservation laws and the second law of thermodynamics, and provide constraints which must be met when modeling the dependent variables within a constitutive class to ensure dissipation of the free energy. We show that existing models derived using different techniques and starting points fit within this family. We regularise a classical model derived using asymptotic techniques to obtain a model which better handles film rupture, and perform numerical simulations in 2 and 3 dimensions using linear finite elements in space and a convex splitting method in time to investigate the evolution of a flat thin film undergoing rupture and dewetting on a flat solid substrate.

Keywords

Thin films Thermomechanical consistency Coleman–Noll procedure Phase-field model Thin-film rupture Dewetting Free-energy dissipation Rational mechanics 

Notes

Acknowledgements

This work was funded by the Leverhulme Trust Modeling and Analytics for a Sustainable Society Grant. The contribution of the second author was partially supported by the Engineering and Physical Sciences Research Council (EPSRC) under grant EP/I036427/1.

References

  1. 1.
    Burelbach, J.P., Bankoff, S.G., Davis, S.H.: Nonlinear stability of evaporating/condensing liquid films. J. Fluid Mech 195, 463–494 (1988)CrossRefGoogle Scholar
  2. 2.
    Coleman, B.D., Noll, W.: The thermodynamics of elastic materials with heat conductivity and viscosity. Arch. Ration. Mech. Anal. 13, 167–178 (1963)CrossRefGoogle Scholar
  3. 3.
    Eperon, G.E., Burlakov, V.M., Docampo, P., Goriely, A, Snaith, H.J.: Morphological control for high performance, solution-processed planar heterojunction Perovskite solar cells. Adv. Funct. Mater 24, 151–157 (2014)CrossRefGoogle Scholar
  4. 4.
    Fetzer, R., Jacobs, K., Munch, A., Wagner, B., Witelski, T.P.: New slip regimes and the shape of dewetting thin liquid films. Phys. Rev. Lett. 95(12), 127801 (2005).  https://doi.org/10.1103/PhysRevLett.95.127801 CrossRefGoogle Scholar
  5. 5.
    Gomez, H., van der Zee, K. G.: Computational phase-field modeling. In: Encyclopedia of Computational Mechanics, 2nd edn. Wiley, London (2017). ISBN 978-1-119-00379-3Google Scholar
  6. 6.
    Gratzel, M.: The light and shade of perovskite solar cells. Nat. Mater. 13, 838–842 (2014)CrossRefGoogle Scholar
  7. 7.
    Gurtin, M.E.: Generalized Ginzburg-Landau and Cahn-Hilliard equations based on microforce balance. Phys. D. 92, 178–192 (1996)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Gurtin, M. E., Fried, E., Anand, L.: The Mechanics and Thermodynamics of Continua. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  9. 9.
    Kheshgi, H.S., Scriven, L.E.: Dewetting: nucleation and growth of dry regions. Chem. Eng. Sci 46, 519–526 (1991)CrossRefGoogle Scholar
  10. 10.
    Lyushnin, A.V., Golovin, A.A., Pisman, L.M.: Fingering instability of thin evaporating liquid films. Phys. Rev. E 65(2), 021602 (2002).  https://doi.org/10.1103/PhysRevE.65.021602 MathSciNetCrossRefGoogle Scholar
  11. 11.
    Oron, A., Davis, S.H., Bankoff, S.G.: Long-scale evolution of liquid thin films. Rev. Mod. Phys. 69, 931–980 (1997)CrossRefGoogle Scholar
  12. 12.
    Pismen, L.M., Pomeau, Y.: Disjoining potential and spreading of thin liquid layers in the diffuse-interface model coupled to hydrodynamics. Phys. Rev. E. 62, 2480–2492 (2000)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Sibley, D.N., Nold, A., Savva, N., Kalliadasis, S.: A comparison of slip, disjoining pressure, and interface formation models for contact line motion through asymptotic analysis of thin two-dimensional droplet spreading. J. Eng. Math. 94, 19–41 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Thiele, U: Thin film evolution equations from (evaporating) dewetting liquid layers to epitaxial growth. J. Phys. Condens. Matter. 22, 1–11 (2010)CrossRefGoogle Scholar
  15. 15.
    Thiele, U: Note on thin film equations for solutions and suspensions. Eur. Phys. J. Special Topics 197, 213–220 (2011)CrossRefGoogle Scholar
  16. 16.
    Wodo, O., Ganapathysubramanian, B.: Modeling morphology evolution during solvent-based fabrication of organic solar cells. Comput. Mater. Sci. 55, 113–126 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Christopher Miles
    • 1
  • Kristoffer G. van der Zee
    • 1
    Email author
  • Matthew E. Hubbard
    • 1
  • Roderick MacKenzie
    • 2
  1. 1.School of Mathematical SciencesUniversity of NottinghamNottinghamUK
  2. 2.Faculty of EngineeringUniversity of NottinghamNottinghamUK

Personalised recommendations