Targeting Biofilms in Translational Research

  • Nicholas N. Ashton
  • Dustin L. Williams


Biofilms underpin the disease etiology of nearly all opportunistic bacterial infections especially when integumentary barriers are surgically breached and foreign materials remain implanted. Endogenous spread from the patient’s own microbial flora is the likely source of most surgical site infections. Biomaterials potentiate infection by providing a substrate for biofilm formation. The biofilm protects these pathogens from both host immunity and clinical interventions in a variety of ways. Biofilm-forming bacteria excrete sticky exopolysaccharides to form cohesive communal aggregates and adhesive attachments to foreign surfaces like devitalized tissues and implanted biomaterials; this strategy deranges phagocytic clearance by host immune cells. Quiescent phenotypic variants in the biofilm cells are tolerant of antibiotic concentrations many orders of magnitude greater than would otherwise kill planktonic phenotypes, concentrations greatly exceeding toxic thresholds bounding safe systemic antibiotic concentrations. Biofilms are, thus, a nidus for infection as tolerant cells can outlast clinical antibiotic courses to subsequently reseed infection. Much emphasis has been placed on preventing biofilm infections from occurring as clinical strategies for eradicating established biofilm infections frequently fail. Biofilm infections usually require extensive surgical intervention to remove implanted biomaterials and debride affected tissues. These procedures are costly and usually accompanied by high patient mortality and morbidity. There is a pressing need for strategies that specifically target the biofilm because clinical measures to prevent infection still fail in this antibiotic era at great financial and physical expense.


Targeting biofilms Translational research Initial inocula Antibiotic Tolerance Infection 



Author DLW has financial interest in Curza Global, LLC.


  1. 1.
    Mangram, A. J., et al. (1999). Guideline for prevention of surgical sit infection, 1999. Infection Control and Hospital Epidemiology, 20, 247.CrossRefGoogle Scholar
  2. 2.
  3. 3.
    Cogen, A. L., Nizet, V., & Gallo, R. L. (2008). Skin microbiota : A source of disease or defence ? The British Journal of Dermatology, 158, 442–455.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Mortazavi, S. M. J., Schwartzenberger, J., Austin, M. S., Purtill, J. J., & Parvizi, J. (2010). Revision total knee arthroplasty infection: Incidence and predictors. Clinical Orthopaedics and Related Research, 468, 2052–2059.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Moriarty, T. F., et al. (2016). Orthopaedic device-related infection: Current and future interventions for improved prevention and treatment. EFORT Open Reviews, 1(13–17), 89.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Gahlot, R., Nigam, C., Kumar, V., Yadav, G., & Anupurba, S. (2014). Catheter-related bloodstream infections. International Journal of Critical Illness and Injury Science, 4(162–167), 161.CrossRefGoogle Scholar
  7. 7.
    Franco, J. J., & Ruisi, P. (2014). Infectious complications of percutaneous cardiac procedures. Interventional Cardiology, 6, 445–452.CrossRefGoogle Scholar
  8. 8.
    Achermann, Y., Goldstein, E. J. C., Coenye, T., & Shirtliff, M. E. (2014). Propionibacterium acnes : From commensal to opportunistic biofilm- associated implant pathogen. Clinical Microbiology Reviews, 27, 419–440.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Grice, E. A., et al. (2009). Topographical and temporal diversity of the human skin microbiome. Science, 324, 1190–1192.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Portillo, M. E., Corvec, S., Borens, O., & Trampuz, A. (2013). Propionibacterium acnes : An underestimated pathogen in implant-associated infections. BioMed Research International, 2013, 1.CrossRefGoogle Scholar
  11. 11.
    Sahin, Y. A. F., & Schwyzer, H. K. (2013). Characteristics and outcome of 16 periprosthetic shoulder joint infections. Infection, 41, 613–620.CrossRefGoogle Scholar
  12. 12.
    Levy, P. Y., et al. (2008). Propionibacterium acnes postoperative shoulder arthritis : An emerging clinical entity. Clinical Infectious Diseases, 46, 1884–1886.CrossRefGoogle Scholar
  13. 13.
    Contracture, C., et al. (2009). Pilot study of association of bacteria on breast implants with capsular contracture. Journal of Clinical Microbiology, 47, 1333–1337.CrossRefGoogle Scholar
  14. 14.
    Sampedro, M. F., et al. (2010). A biofilm approach to detect bacteria on removed spinal implants. Spine (Phila. Pa. 1976), 35, 1218–1224.CrossRefGoogle Scholar
  15. 15.
    Nichols, R. L. (1984). Prevention of infection in high risk gastrointestinal surgery. The American Journal of Medicine, 76, 111–119.CrossRefGoogle Scholar
  16. 16.
    Collaborative, G. (2018). Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: A prospective, international, multicentre cohort study. The Lancet Infectious Diseases, 18, 516–525.CrossRefGoogle Scholar
  17. 17.
    Lachiewicz, M. P., Moulton, L. J., & Jaiyeoba, O. (2015). Pelvic surgical site infections in gynecologic surgery. Infectious Diseases in Obstetrics and Gynecology, 2015, 1–8.CrossRefGoogle Scholar
  18. 18.
    Nablo, B. J., Rothrock, A. R., & Schoenfisch, M. H. (2005). Nitric oxide-releasing sol – gels as antibacterial coatings for orthopedic implants. Journal of Biomaterials, 26, 917–924.CrossRefGoogle Scholar
  19. 19.
    Hetrick, E. M., Schoenfisch, M. H., Hetrick, E. M., & Hetrick, E. M. (2006). Reducing implant-related infections: Active release strategies. Chemical Society Reviews, 35, 780–789.CrossRefGoogle Scholar
  20. 20.
    Mclaughlin, J. S., Hornick, R. B., Ronica, M., & Frank, M. (2019). Sources of contamination in open heart surgery. JAMA, 230, 1415–1418.Google Scholar
  21. 21.
    Chu, N. S., Chan-myers, H., Aam, R. M., Ghazanfari, N., & Antonoplos, P. (1999). Levels of naturally occurring microorganisms on surgical instruments after clinical use and after washing. American Journal of Infection Control, 27, 315–319.CrossRefGoogle Scholar
  22. 22.
    Agarwal, A. A. (2019). University of T. of O. Intraoperative guard to avoid biofilm and infection at pedicle screw & bone interface. In Poster presentation at the international combined orthopaedic research societies annual meeting.Google Scholar
  23. 23.
    Sender, R., Fuchs, S., & Milo, R. (2016). Revised estimates for the number of human and bacteria cells in the body. PLoS Biology, 14, e1002533.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Hanazaki, K., Shingu, K., Adachi, W., Miyazaki, T., & Amano, J. (1999). Chlorhexidine dressing for reduction in microbial colonization of the skin with central venous catheters: A prospective randomized controlled trial. The Journal of Hospital Infection, 42, 165.PubMedGoogle Scholar
  25. 25.
    Mann, T. J., Orlikowski, C. E., Gurrin, L. C., & Keil, A. D. (2001). The effect of the biopatch, a chlorhexidine impregnated dressing, on bacterial colonization of epidural catheter exit sites. Anaesthesia and Intensive Care, 29, 600–603.CrossRefGoogle Scholar
  26. 26.
    Krizek, T. J., & Robson, M. C. (1975). Evolution of quantitative bacteriology in wound management. American Journal of Surgery, 130, 579–584.CrossRefGoogle Scholar
  27. 27.
    Robson, M. C., Lea, C. E., Dalton, J. B., & Heggers, J. P. (1968). Quantitative bacteriology and delayed wound colsure. Surgical Forum, 19, 501–502.PubMedGoogle Scholar
  28. 28.
    Robson, M. C., & Heggers, J. P. (1969). Bacterial quantification of open wounds. Plastic and Reconstructive Surgery, 44, 19–24.CrossRefGoogle Scholar
  29. 29.
    Manley, G. (2014). Shigella: A highly virulent elusive pathogen. Current Tropical Medicine Reports, 1, 81–87.Google Scholar
  30. 30.
    Greig, J. D., Todd, E. C. D., Bartleson, C., & Michaels, B. (2010). Infective doses and pathogen carriage. In Food safety education conference (pp. 1–31).Google Scholar
  31. 31.
    Leggett, H. C., Cornwallis, C. K., & West, S. A. (2012). Mechanisms of pathogenesis, infective dose and virulence in human parasites. PLoS Pathogens, 8(10–12), e1002512.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Evans, D. G., Miles, A. A., & Niven, J. S. F. (1948). The enhancement of bacterial infections by adrenaline. British Journal of Experimental Pathology, 29, 20–39.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Miles, A. A. & Niven, J. S. F. The enhancement of infection during shock pro- DUCED by bacterial toxins and other agents. (1949).Google Scholar
  34. 34.
    Kass, E. H. (1956). Diagnostic urology asymptomatic infections of the urinary tract. Trans-American Physiology, 69, 56–64.Google Scholar
  35. 35.
    Antiseptic, U. (1957). Bacteriuria and the diagnosis of infections of the urinary tract. A.M.A. Archives of Internal Medicine, 100, 709–714.CrossRefGoogle Scholar
  36. 36.
    Robson, M. C., & Heggers, J. P. (1970). Delayed wound closures based on bacterial counts. Journal of Surgical Oncology, 2, 379–383.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Liedberg, N. C. F., Reiss, E., & Artz, C. P. (1955). The effect of bacteria on the take of split-thickness skin grafts in rabbits. Annals of Surgery, 142, 92–96.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Bowler, P. G. (2003). The 10(5) bacterial growth guideline : Reassessing its clinical relevance in wound healing. Ostomy/Wound Management, 49, 44–53.PubMedGoogle Scholar
  39. 39.
    Elek, S. D., & Conen, P. E. (1957). The virulence of staphylococcus pyogenes for man; a study of the problems of wound infection. British Journal of Experimental Pathology, 38, 573–586.PubMedPubMedCentralGoogle Scholar
  40. 40.
    James, R. C., & MacLeod, C. J. (1961). Induction of staphyloccocal infections in mice with small inocula introduced on sutures. British Journal of Experimental Pathology, 42, 266–277.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Ratner, B. D. (2004). Biomaterials science: An introduction to materials in medicine. Amsterdam: Academic Press.Google Scholar
  42. 42.
    Costerton, J. W., Geesey, G. G., & Cheng, K.-J. (1978). How bacteria stick. Scientific American, 238, 86–95.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Segal, A. W. (2005). How neutrophils kill microbes. Biological Membranes, 23, 197–223.Google Scholar
  44. 44.
    Nizet, V. (2007). Understanding how leading bacterial pathogens subvert innate immunity to reveal novel therapeutic targets. The Journal of Allergy and Clinical Immunology, 120, 13–22.CrossRefGoogle Scholar
  45. 45.
    Sarantis, H., & Grinstein, S. (2012). Subversion of phagocytosis for pathogen survival. Cell Host & Microbe, 12, 419–431.CrossRefGoogle Scholar
  46. 46.
    Baltimore, R. S., & Mitchell, M. (1980). Immunologic investigations of mucoid strains of Pseudomonas aeruginosa : Comparison of susceptibility to opsonic antibody in mucoid and nonmucoid strains. The Journal of Infectious Diseases, 141, 238–247.CrossRefGoogle Scholar
  47. 47.
    Stewart, p. S. (2014). Biophysics of biofilm infection. Pathogens and Disease, 70, 212–218.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Matsui, H., et al. (2005). Reduced three-dimensional motility in dehydrated airway mucus prevents neutrophil capture and killing bacteria on airway epithelial surfaces. Journal of Immunology, 175, 1090–1099.CrossRefGoogle Scholar
  49. 49.
    Parkhurst, M. R., & Saltzman, W. M. (1992). Quantification of human neutrophil motility in three-dimensional collagen gels. Effect of collagen concentration. Biophysical Journal, 61, 306–315.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Parkhurst, M. R., & Saltzman, W. M. (1994). Leukocytes migrate through three-dimensional gels of midcycle cervical mucus. Cellular Immunology, 156, 77–94.CrossRefGoogle Scholar
  51. 51.
    Hänsch, G. M., Brenner-Weiss, G., Prior, B., Wagner, C., & Obst, U. (2008). The extracellular polymer substance of Pseudomonas aeruginosa: Too slippery for neutrophils to migrate on? The International Journal of Artificial Organs, 31, 796–803.CrossRefGoogle Scholar
  52. 52.
    Leid, J. G. (2009). Bacterial biofilms resist key host defenses once in biofilms, bacterial pathogens resist antibiotics and withstand several host-defense measures, including phagocytosis. Microbe, 4, 66–70.Google Scholar
  53. 53.
    Herant, M. (2006). Mechanics of neutrophil phagocytosis: Experiments and quantitative models. Journal of Cell Science, 119, 1903–1913.CrossRefGoogle Scholar
  54. 54.
    Gutiérrez, D., Hidalgo-Cantabrana, C., Rodríguez, A., García, P., & Ruas-Madiedo, P. (2016). Monitoring in real time the formation and removal of biofilms from clinical related pathogens using an impedance-based technology. PLoS One, 11(1–17), e0163966.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Clardy, J., Fischbach, M. A., & Currie, C. R. (2009). The natural history of antibiotics. Current Biology, 19, R437–R441.CrossRefGoogle Scholar
  56. 56.
    Costerton, J. W., Cheng, K. J., Geesey, G. G., Ladd, T. I., Nickel, J. C., Dasgupta, M., & Marrie, T. J. (1987). Bacterial Biofilms in Nature and Disease. Annual Review of Microbiology, 41, 435–464.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Jacques, M., Marrie, T. J., & Costerton, J. W. (1987). Review: Microbial colonization of prostehtic devices. Microbial Ecology, 13, 173–191.CrossRefGoogle Scholar
  58. 58.
    Stewart, P. S., et al. (2016). Reaction-diffusion theory explains hypoxia and heterogeneous growth within microbial biofilms associated with chronic infections. npj Biofilms Microbiomes, 2, 1–8.CrossRefGoogle Scholar
  59. 59.
    Ochman, H. G. L., & Found, G. (2002). Evolution of bacterial pathogenesis and Symbiosis. Science, 292, 1096–1099.CrossRefGoogle Scholar
  60. 60.
    Stewart, P. S. (2015). Antimicrobial Tolerance in Biofilms. Microbiology Spectrum, 3, 1–30.CrossRefGoogle Scholar
  61. 61.
    Wolcott, R. D., et al. (2010). Biofilm maturity studies indicate sharp debridement opens a time-dependent therapeutic window. Journal of Wound Care, 19, 320–328.CrossRefGoogle Scholar
  62. 62.
    Khoury, A. E., Lam, K., Ellis, E., & Costerton, J. W. (1992). Prevention and control of bacterial infections associated with medical devices. ASAIO Journal, 38, 174–178.CrossRefGoogle Scholar
  63. 63.
    Tan, S. Y., & Tatsumura, Y. (2015). Alexander Fleming (1881–1955): Discoverer of penicillin. Singapore Medical Journal, 56, 366–367.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Fleming, A. (1929). On antibacterial action of culture of Penicillium, with special reference to their use in isola- tion of B. influenzae. British Journal of Experimental Pathology, 10, 226–236.PubMedCentralPubMedGoogle Scholar
  65. 65.
    Ashton, N. N., et al. (2019). In vitro testing of a first-in-class tri-alkylnorspermidine-biaryl antibiotic in an anti-biofilm silicone coating. Acta Biomaterialia, 93, 25–35. Scholar
  66. 66.
    Smith, A. L., Fiel, S. B., Mayer-Hamblett, N., Ramsey, B., & Burns, J. L. (2003). Susceptibility testing of Pseudomonas aeruginosa isolates and clinical response to parenteral antibiotic administration: Lack of association in cystic fibrosis. Chest, 123, 1495–1502.CrossRefGoogle Scholar
  67. 67.
    Keays, T., et al. (2009). A retrospective analysis of biofilm antibiotic susceptibility testing: A better predictor of clinical response in cystic fibrosis exacerbations. Journal of Cystic Fibrosis, 8, 122–127.CrossRefGoogle Scholar
  68. 68.
    Yuan, M., et al. (2018). Repurposing the anticancer drug cisplatin with the aim of developing novel Pseudomonas aeruginosa infection control agents. Beilstein Journal of Organic Chemistry, 14, 3059–3069.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Burke, J. F. (1961). The effective period of preventive antibiotic action in experimental incisions and dermal lesions. Surgery, 50, 161–168.PubMedGoogle Scholar
  70. 70.
    Miles, A. A., Burke, J., & Miles, E. M. (1957). The value and duration of defence reactions of the skin to the primary lodgement of bacteria. British Journal of Experimental Pathology, 38, 79–96.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Polk, H. C., & Milest, A. A. (1973). The decisive period in the primary infection of muscle by escherichia coli. British Journal of Experimental Pathology, 54, 99–109.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Gristina, A. G., Oga, M., Webb, L. X., & Hobgood, C. D. (1985). Adherent bacterial colonization in the pathogenesis of osteomyelitis. Science, 228, 990–993.CrossRefGoogle Scholar
  73. 73.
    Omar, A., Wright, J., Schultz, G., Burrell, R., & Nadworny, P. (2017). Microbial biofilms and chronic wounds. Microorganisms, 5, 9.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Classen, D. C., et al. (2015). The timing of prophylactic administration of antibiotics and the risk of surgical-wound infection. The New England Journal of Medicine, 326, 281–286.CrossRefGoogle Scholar
  75. 75.
    Johnson, J. D., et al. (2017). Serum and wound vancomycin levels after Intrawound administration in primary total joint arthroplasty. The Journal of Arthroplasty, 32, 924–928.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Chiang, H. Y., Herwaldt, L. A., Blevins, A. E., Cho, E., & Schweizer, M. L. (2014). Effectiveness of local vancomycin powder to decrease surgical site infections: A meta-analysis. The Spine Journal, 14, 397–407.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Molinari, R. W., Khera, O. A., & Molinari, W. J., III. (2012). Prophylactic intraoperative powdered vancomycin and postoperative deep spinal wound infection: 1,512 consecutive surgical cases over a 6-year period. European Spine Journal, 21, 476–482.CrossRefGoogle Scholar
  78. 78.
    Kay, G., et al. (2018). Cost-effectiveness of TYRX absorbable antibacterial envelope for prevention of cardiovascular implantable electronic device infection. Journal of Medical Economics, 21, 294–300.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Bloom, H. L., et al. (2011). Implantation success and infection in cardiovascular implantable electronic device procedures utilizing an antibacterial envelope. Pacing and Clinical Electrophysiology, 34, 133–142.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Moojen, D. J. F., et al. (2008). In vitro release of antibiotics from commercial PMMA beads and articulating hip spacers. The Journal of Arthroplasty, 23, 1152–1156.CrossRefGoogle Scholar
  81. 81.
    Anagnostakos, K., et al. (2008). Antimicrobial properties and elution kinetics of linezolid-loaded hip spacers in vitro. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 87, 173–178.CrossRefGoogle Scholar
  82. 82.
    McPherson, E., Dipane, M., & Sherif, S. (2013). Dissolvable antibiotic beads in treatment of periprosthetic joint infection and revision arthroplasty – the use of synthetic pure calcium sulfate (Stimulan®) impregnated with vancomycin & tobramycin. Reconstructive Review, 3.Google Scholar
  83. 83.
    Helgeson, M. D., Potter, B. K., Tucker, C. J., Frisch, H. M., & Shawen, S. B. (2009). Antibiotic-impregnated calcium sulfate use in combat-related open fractures. Orthopedics, 32, 323.CrossRefGoogle Scholar
  84. 84.
    Howlin, R. P., et al. (2015). Antibiotic-loaded synthetic calcium sulfate beads for prevention of bacterial colonization and biofilm formation in periprosthetic infections. Antimicrobial Agents and Chemotherapy, 59, 111–120.CrossRefGoogle Scholar
  85. 85.
    Trujillo, J. M., Logue, M. E., Kunkel, R., & Demas, C. P. (2017). Off-label usage of absorbable beads containing antibiotics for prevention of surgical site infections. Wounds, 29, E84–E87.CrossRefGoogle Scholar
  86. 86.
    Aiken, S. S., Cooper, J. J., Florance, H., Robinson, M. T., & Michell, S. (2014). Local release of antibiotics for surgical site infection management using high-purity calcium sulfate: An in vitro elution study. Surgical Infections, 16, 54–61.CrossRefGoogle Scholar
  87. 87.
    Rhodes, C. S., et al. (2017). Evaluation of a chitosan-polyethylene glycol paste as a local antibiotic delivery device. World Journal of Orthopedics, 8, 130.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Lane, D. D., Fessler, A. K., Goo, S., Williams, D. L., & Stewart, R. J. (2017). Sustained tobramycin release from polyphosphate double network hydrogels. Acta Biomaterialia, 50, 484–492.CrossRefGoogle Scholar
  89. 89.
    Samara, E., et al. (2017). Antibiotic stability over six weeks in aqueous solution at body temperature with and without heat treatment that mimics the curing of bone cement. The Bone & Joint Research, 6, 296–306.CrossRefGoogle Scholar
  90. 90.
    Sinclair, K. D., et al. (2013). Model development for determining the efficacy of a combination coating for the prevention of perioperative device related infections: A pilot study. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 101, 1143–1153.CrossRefGoogle Scholar
  91. 91.
    Bernthal, N. M., et al. (2010). A mouse model of post-arthroplasty Staphylococcus aureus joint infection to evaluate in vivo the efficacy of antimicrobial implant coatings. PLoS One, 5, e12580.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Zmistowski, B., & Casper, D. S. (2013). Periprosthetic Joint Infection Increases the Risk of one-year mortality. The Journal of Bone and Joint Surgery. American Volume, 95, 2177–2184.CrossRefGoogle Scholar
  93. 93.
    Rezapoor, M., & Parvizi, J. (2015). Prevention of periprosthetic joint infection. The Bone & Joint Journal, 99B, 3–10.Google Scholar
  94. 94.
    Williams, D. L., & Costerton, J. W. (2012). Using biofilms as initial inocula in animal models of biofilm-related infections. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 100(B), 1163–1169.CrossRefGoogle Scholar
  95. 95.
    Williams, D. L., et al. (2012). Experimental model of biofilm implant-related osteomyelitis to test combination biomaterials using biofilms as initial inocula. Journal of Biomedical Materials Research. Part A, 100 A, 1888–1900.CrossRefGoogle Scholar
  96. 96.
    Williams, D. L., et al. (2012). In vivo efficacy of a silicone-cationic steroid antimicrobial coating to prevent implant-related infection. Biomaterials, 33, 8641–8656.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Isaacson, B. M., Brown, A. A., Brunker, L. B., Higgins, T. F., & Bloebaum, R. D. (2011). Clarifying the structure and bone mineral content of heterotopic ossification. The Journal of Surgical Research, 167, e163–e170.CrossRefGoogle Scholar
  98. 98.
    Pavey, G. J., et al. (2015). Bioburden increases heterotopic ossification formation in an established rat model. Clinical Orthopaedics and Related Research, 473, 2840–2847.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nicholas N. Ashton
    • 1
    • 2
  • Dustin L. Williams
    • 1
    • 2
    • 3
    • 4
    • 5
  1. 1.George E. Wahlen Department of Veterans AffairsSalt Lake CityUSA
  2. 2.Department of OrthopaedicsUniversity of UtahSalt Lake CityUSA
  3. 3.Department of PathologyUniversity of UtahSalt Lake CityUSA
  4. 4.Department of Biomedical EngineeringUniversity of UtahSalt Lake CityUSA
  5. 5.Department of Physical Medicine and RehabilitationUniformed Services University of the Health SciencesBethesdaUSA

Personalised recommendations