Advertisement

Catheter-Associated Urinary Tract Infections: Development of a Test Method for Assessing the Efficacy of Antimicrobial Technologies/Products

  • Jennifer Summers
  • Darla M. GoeresEmail author
Chapter

Abstract

Urinary catheters are one of the most commonly utilized medical devices worldwide. They are used in virtually every healthcare setting and contribute to improvements in patient care. While urinary catheters provide invaluable aid to patients, they are not without complications, the most notable being catheter-associated urinary tract infections (CAUTI). Once a urinary catheter is in place, pathogens may migrate to the bladder one of two ways, through the catheter lumen or extraluminally in the periurethral space. In vitro methods are useful tools for predicting clinical efficacy only if they accurately model the most important factors contributing to a clinical infection. Although in vitro methods can’t replace in vivo scenarios, outcomes may be improved as experiments approximate relevant criteria including the biofilm phenotype, time, media type, materials similarities and environment.

Keywords

Urinary catheter Biofilm Infection In vitro Model Relevant Repeatable 

Notes

Acknowledgments

Darla M. Goeres, Ph.D., holds an Innovation in Regulatory Science Award from BWF.

References

  1. 1.
    Control, C.f.D., Urinary Tract Infection (Catheter-Associated Urinary Tract Infection [CAUTI] and Non-Catheter-Associated Urinary Tract Infection [UTI] and Other Urinary System Infection [USI] Events. 2018(Device-associated Module-UTI).Google Scholar
  2. 2.
    Lo, E., et al. (2014). Strategies to prevent catheter-associated urinary tract infections in acute care hospitals: 2014 update. Infection Control & Hospital Epidemiology, 35(Suppl 2), S32–S47.CrossRefGoogle Scholar
  3. 3.
    Weiner, L. M., et al. (2016). Antimicrobial-resistant pathogens associated with healthcare-associated infections: Summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011–2014. Infection Control and Hospital Epidemiology, 37(11), 1288–1301.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Marzo, A., et al. (2018). An engineering approach towards a more discrete and efficient urinary drainage system. Proceedings of the Institution of Mechanical Engineers. Part H, 954411918790286.Google Scholar
  5. 5.
    Foley, F. E. B. (1937). A hemostatic bag catheter. The Journal of Urology, 38(1), 134–139.CrossRefGoogle Scholar
  6. 6.
    Feneley, R. C., Hopley, I. B., & Wells, P. N. (2015). Urinary catheters: History, current status, adverse events and research agenda. Journal of Medical Engineering & Technology, 39(8), 459–470.CrossRefGoogle Scholar
  7. 7.
    Hanafy, H. M., Saad, S. M., & Al-Ghorab, M. M. (1974). Ancient Egyptian medicine: Contribution to urology. Urology, 4(1), 114–120.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Miller, A., et al. (1958). Postoperative infection in urology. Lancet, 2(7047), 608–612.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Gillespie, W. A., et al. (1960). The diagnosis, epidemiology and control of urinary infection in urology and gynaecology. Journal of Clinical Pathology, 13, 187–194.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Garibaldi, R. A., et al. (1974). Factors predisposing to bacteriuria during indwelling urethral catheterization. The New England Journal of Medicine, 291(5), 215–219.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Garibaldi, R. A., et al. (1980). Meatal colonization and catheter-associated bacteriuria. The New England Journal of Medicine, 303(6), 316–318.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Costerton, J. W., Geesey, G. G., & Cheng, K. J. (1978). How bacteria stick. Scientific American, 238(1), 86–95.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Daifuku, R., & Stamm, W. E. (1986). Bacterial adherence to bladder uroepithelial cells in catheter-associated urinary tract infection. The New England Journal of Medicine, 314(19), 1208–1213.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Nickel, J. C., Gristina, A. G., & Costerton, J. W. (1985). Electron microscopic study of an infected Foley catheter. Canadian Journal of Surgery, 28(1), 50–51, 54.Google Scholar
  15. 15.
    Costerton, J. W., et al. (1987). Bacterial biofilms in nature and disease. Annual Review of Microbiology, 41, 435–464.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Donlan, R. M., & Issue, S. (2001). Biofilms and device-associated infections. Emerging Infectious Diseases, 7(2), 277–281.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Stoodley, P., et al. (2011). Orthopaedic biofilm infections. Current Orthopaedic Practice, 22(6), 558–563.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Busscher, H. J., et al. (2010). Biofilm formation on dental restorative and implant materials. Journal of Dental Research, 89(7), 657–665.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Hu, H., et al. (2016). Bacterial biofilm infection detected in breast implant-associated anaplastic large-cell lymphoma. Plastic and Reconstructive Surgery, 137(6), 1659–1669.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Meslemani, D., Yaremchuk, K., & Rontal, M. (2010). Presence of biofilm on adult tracheostomy tubes. Ear, Nose, & Throat Journal, 89(10), 496–504.Google Scholar
  21. 21.
    Food and Drug Administration, U. (1997). Guidance for the content of premarket notifications for conventional and antimicrobial Foley catheters.Google Scholar
  22. 22.
    Malpiedi, P. J. (2011). National and state healthcare-associated infection standardized infection ratio report.Google Scholar
  23. 23.
    Peasah, S. K., et al. (2013). Medicare non-payment of hospital-acquired infections: Infection rates three years post implementation. Medicare & Medicaid Research Review, 3(3).Google Scholar
  24. 24.
    Saint, S., et al. (2016). A program to prevent catheter-associated urinary tract infection in acute care. The New England Journal of Medicine, 374(22), 2111–2119.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Services, U.D.o.H.a.H. (2013). National action plan to prevent health care-associated infections: Road map to elimination, Executive Summary. p. 1–19.Google Scholar
  26. 26.
    Hooton, T. M., & Clinical, p. (2012). Uncomplicated urinary tract infection. The New England Journal of Medicine, 366(11), 1028–1037.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Ingersoll, M. A., & Albert, M. L. (2013). From infection to immunotherapy: Host immune responses to bacteria at the bladder mucosa. Mucosal Immunology, 6(6), 1041–1053.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Parsons, C. L., et al. (1990). Bladder surface glycosaminoglycans: An epithelial permeability barrier. The Journal of Urology, 143(1), 139–142.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Carlsson, S., et al. (2001). Effects of pH, nitrite, and ascorbic acid on nonenzymatic nitric oxide generation and bacterial growth in urine. Nitric Oxide, 5(6), 580–586.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Raffi, H. S., et al. (2005). Tamm-Horsfall protein acts as a general host-defense factor against bacterial cystitis. American Journal of Nephrology, 25(6), 570–578.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Hannan, T. J., et al. (2012). Host-pathogen checkpoints and population bottlenecks in persistent and intracellular uropathogenic Escherichia coli bladder infection. FEMS Microbiology Reviews, 36(3), 616–648.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Arinzon, Z., et al. (2012). Clinical presentation of urinary tract infection (UTI) differs with aging in women. Archives of Gerontology and Geriatrics, 55(1), 145–147.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    de Lastours, V., & Foxman, B. (2014). Urinary tract infection in diabetes: Epidemiologic considerations. Current Infectious Disease Reports, 16(1), 389.CrossRefGoogle Scholar
  34. 34.
    Lichtenberger, P., & Hooton, T. M. (2008). Complicated urinary tract infections. Current Infectious Disease Reports, 10(6), 499–504.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Levison, M. E., & Kaye, D. (2013). Treatment of complicated urinary tract infections with an emphasis on drug-resistant gram-negative uropathogens. Current Infectious Disease Reports, 15(2), 109–115.CrossRefGoogle Scholar
  36. 36.
    Chenoweth, C. E., & Saint, S. (2011). Urinary tract infections. Infectious Disease Clinics of North America, 25(1), 103–115.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    O’May, G. A., et al. (2009). Complicated urinary tract infections due to catheters., 3, 123–165.Google Scholar
  38. 38.
    Haley, R. W., et al. (1981). Nosocomial infections in U.S. hospitals, 1975-1976: Estimated frequency by selected characteristics of patients. The American Journal of Medicine, 70(4), 947–959.CrossRefGoogle Scholar
  39. 39.
    Maki, D. G., & Tambyah, P. A. (2001). Engineering out the risk for infection with urinary catheters. Emerging Infectious Diseases, 7(2), 342–347.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Jacobsen, S. M., et al. (2008). Complicated catheter-associated urinary tract infections due to Escherichia coli and Proteus mirabilis. Clinical Microbiology Reviews, 21(1), 26–59.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Stamm, W. E. (1991). Catheter associated urinary tract infections: Epidemiology, pathogenesis, and prevention. The American Journal of Medicine, 91(3B), 65S–71S.CrossRefGoogle Scholar
  42. 42.
    Tambyah, P. A., Halvorson, K. T., & Maki, D. G. (1999). A prospective study of pathogenesis of catheter-associated urinary tract infections. Mayo Clinic Proceedings, 74(2), 131–136.CrossRefGoogle Scholar
  43. 43.
    Saint, S., & Chenoweth, C. E. (2003). Biofilms and catheter-associated urinary tract infections. Infectious Disease Clinics of North America, 17(2), 411–432.CrossRefGoogle Scholar
  44. 44.
    Nickel, J., Grant, S., & Costerton, J. (1985). Catheter-associated bacterium: An experimental study. Urology, 26(4), 369–375.CrossRefGoogle Scholar
  45. 45.
    Warren, J. W. (2001). Catheter-associated urinary tract infections. International Journal of Antimicrobial Agents, 17(4), 299–303.CrossRefGoogle Scholar
  46. 46.
    Barford, J. M., et al. (2008). A model of catheter-associated urinary tract infection inittiated by bacterial contamination of the catheter tip. BJU International, 102(1), 67–74.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Hidron, A. I., et al. (2008). NHSN annual update: Antimicrobial-resistant pathogens associated with healthcare-associated infections: Annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006–2007. Infection Control and Hospital Epidemiology, 29(11), 996–1011.CrossRefGoogle Scholar
  48. 48.
    Mulvey, M. A. (2002). Adhesion and entry of uropathogenic Escherichia coli. Cellular Microbiology, 4(5), 257–271.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Struve, C., Bojer, M., & Krogfelt, K. A. (2008). Characterization of Klebsiella pneumoniae type 1 fimbriae by detection of phase variation during colonization and infection and impact on virulence. Infection and Immunity, 76(9), 4055–4065.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Stahlhut, S. G., et al. (2012). Biofilm formation of Klebsiella pneumoniae on urethral catheters requires either type 1 or type 3 fimbriae. FEMS Immunology and Medical Microbiology, 65(2), 350–359.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Fox-Moon, S.M. and M.E. Shirtliff, Urinary tract infections caused by Proteus mirabilis. 2015: p. 1389–1400.Google Scholar
  52. 52.
    Flores-Mireles, A. L., et al. (2015). Urinary tract infections: Epidemiology, mechanisms of infection and treatment options. Nature Reviews. Microbiology, 13(5), 269–284.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Nickel, J. C., et al. (1994). Bacterial biofilms: Influence on the pathogenesis, diagnosis and treatment of urinary tract infections. The Journal of Antimicrobial Chemotherapy, 33(Suppl A), 31–41.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Ipe, D. S., Horton, E., & Ulett, G. C. (2016). The basics of bacteriuria: Strategies of microbes for persistence in urine. Frontiers in Cellular and Infection Microbiology, 6, 14.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Justice, S. S., et al. (2008). Morphological plasticity as a bacterial survival strategy. Nature Reviews. Microbiology, 6(2), 162–168.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Stewart, P. S. (1996). Theoretical aspects of antibiotic diffusion into microbial biofilms. Antimicrobial Agents and Chemotherapy, 40(11), 2517–2522.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Hoyle, B. D., Alcantara, J., & Costerton, J. W. (1992). Pseudomonas aeruginosa biofilm as a diffusion barrier to piperacillin. Antimicrobial Agents and Chemotherapy, 36(9), 2054–2056.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Mobley, H. L., Island, M. D., & Hausinger, R. P. (1995). Molecular biology of microbial ureases. Microbiological Reviews, 59(3), 451–480.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Stickler, D., et al. (1993). Proteus mirabilis biofilms and the encrustation of urethral catheters. Urological Research, 21(6), 407–411.CrossRefGoogle Scholar
  60. 60.
    Lee, C. R., et al. (2013). Strategies to minimize antibiotic resistance. International Journal of Environmental Research and Public Health, 10(9), 4274–4305.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Raad, I. (1995). Antibiotics and prevention of microbial colonization of catheters. Antimicrobial Agents and Chemotherapy, 39(11), 2397–2400.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Fu, W., et al. (2010). Bacteriophage cocktail for the prevention of biofilm formation by Pseudomonas aeruginosa on catheters in an in vitro model system. Antimicrobial Agents and Chemotherapy, 54(1), 397–404.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Gloag, E. S., et al. (2016). Micro-patterned surfaces that exploit stigmergy to inhibit biofilm expansion. Frontiers in Microbiology, 7, 2157.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Gabriel, M. M., et al. (1996). In vitro evaluation of the efficacy of a silver-coated catheter. Current Microbiology, 33(1), 1–5.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Bologna, R. A., et al. (1999). Hydrogel/silver ion-coated urinary catheter reduces nosocomial urinary tract infection rates in intensive care unit patients: A multicenter study. Urology, 54(6), 982–987.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Karchmer, T. B., et al. (2000). A randomized crossover study of silver-coated urinary catheters in hospitalized patients. Archives of Internal Medicine, 160(21), 3294–3298.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Srinivasan, A., et al. (2006). A prospective trial of a novel, silicone-based, silver-coated Foley catheter for the prevention of nosocomial urinary tract infections. Infection Control and Hospital Epidemiology, 27(1), 38–43.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Pickard, R., et al. (2012). Antimicrobial catheters for reduction of symptomatic urinary tract infection in adults requiring short-term catheterisation in hospital: A multicentre randomised controlled trial. The Lancet, 380(9857), 1927–1935.CrossRefGoogle Scholar
  69. 69.
    Medline Industries, I., Silvertouch Foley Catheter: The Standard For Silver. 2009.Google Scholar
  70. 70.
    Parker, A. E., & Hamilton, M. A. (2011). KSA-SM-10- Assessing Resemblance, Repeatability, and Reproducibility for quantitative methods. Bozeman, MT: C.f.B.E.a.M.S. University.Google Scholar
  71. 71.
    Shrout, J. D., et al. (2006). The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Molecular Microbiology, 62(5), 1264–1277.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Palmer, K. L., Aye, L. M., & Whiteley, M. (2007). Nutritional cues control Pseudomonas aeruginosa multicellular behavior in cystic fibrosis sputum. Journal of Bacteriology, 189(22), 8079–8087.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Cotter, P. D., & Hill, C. (2003). Surviving the acid test: responses of gram-positive bacteria to low pH. Microbiology and Molecular Biology Reviews, 67(3), 429–453, table of contents.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Shepard, B. D., & Gilmore, M. S. (2002). Differential expression of virulence-related genes in Enterococcus faecalis in response to biological cues in serum and urine. Infection and Immunity, 70(8), 4344–4352.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Dalhoff, A., Stubbings, W., & Schubert, S. (2011). Comparative in vitro activities of the novel antibacterial finafloxacin against selected Gram-positive and Gram-negative bacteria tested in Mueller-Hinton broth and synthetic urine. Antimicrobial Agents and Chemotherapy, 55(4), 1814–1818.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Barr, D. B., et al. (2005). Urinary creatinine concentrations in the U.S. population: Implications for urinary biologic monitoring measurements. Environmental Health Perspectives, 113(2), 192–200.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Torffvit, O., & Agardh, C. D. (1993). Tubular secretion of Tamm-Horsfall protein is decreased in type 1 (insulin-dependent) diabetic patients with diabetic nephropathy. Nephron, 65(2), 227–231.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Bouatra, S., et al. (2013). The human urine metabolome. PLoS One, 8(9), e73076.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Nowatzki, P. J., et al. (2012). Salicylic acid-releasing polyurethane acrylate polymers as anti-biofilm urological catheter coatings. Acta Biomaterialia, 8(5), 1869–1880.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Wang, J., et al. (2017). Burden of healthcare-associated infections in China: Results of the 2015 point prevalence survey in dong Guan City. The Journal of Hospital Infection, 96(2), 132–138.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Zarb, P., et al. (2012). The European Centre for Disease Prevention and Control (ECDC) pilot point prevalence survey of healthcare-associated infections and antimicrobial use. Euro Surveillance, 17(46).Google Scholar
  82. 82.
    Hollenbeak, C. S., & Schilling, A. L. (2018). The attributable cost of catheter-associated urinary tract infections in the United States: A systematic review. American Journal of Infection Control, 46(7), 751–757.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Darouiche, R. O. (1997). In vitro efficacy of antimicrobial-coated bladder catheters in inhibiting bacterial migration along catheter surface. Concise Communications. The Journal of Infectious Diseases, 176, 1109–1112.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Gaonkar, T. A., et al. (2003). Evaluation of the antimicrobial efficacy of urinary catheters impregnated with antiseptics in an in vitro urinary tract model. Infection Control and Hospital Epidemiology, 24(7), 506–513.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Sherertz, R. J., Forman, D. M., & Solomon, D. D. (1989). Efficacy of dicloxacillin-coated polyurethane catheters in preventing subcutaneous Staphylococcus aureus infection in mice. Antimicrobial Agents and Chemotherapy, 33(8), 1174–1178.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Darouiche, R. O., et al. (2008). Efficacy of combination of chlorhexidine and protamine sulphate against device-associated pathogens. The Journal of Antimicrobial Chemotherapy, 61(3), 651–657.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Gomes, L. C., et al. (2015). Escherichia coli adhesion, biofilm development and antibiotic susceptibility on biomedical materials. Journal of Biomedical Materials Research. Part A, 103(4), 1414–1423.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Minuth, J. N., Musher, D. M., & Thorsteinsson, S. B. (1976). Inhibition of the antibacterial activity of gentamicin by urine. The Journal of Infectious Diseases, 133(1), 14–21.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Dave, R. N., Joshi, H. M., & Venugopalan, V. P. (2011). Novel biocatalytic polymer-based antimicrobial coatings as potential ureteral biomaterial: Preparation and in vitro performance evaluation. Antimicrobial Agents and Chemotherapy, 55(2), 845–853.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Hachem, R., et al. (2009). Novel antiseptic urinary catheters for prevention of urinary tract infections: Correlation of in vivo and in vitro test results. Antimicrobial Agents and Chemotherapy, 53(12), 5145–5149.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Roe, D., et al. (2008). Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. The Journal of Antimicrobial Chemotherapy, 61(4), 869–876.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Nickel, J. C., Downey, J., & Costerton, J. W. (1992). Movement of pseudomonas aeruginosa along catheter surfaces. A mechanism in pathogenesis of catheter-associated infection. Urology, 39(1), 93–98.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Dohnt, K., et al. (2011). An in vitro urinary tract catheter system to investigate biofilm development in catheter-associated urinary tract infections. Journal of Microbiological Methods, 87(3), 302–308.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Stickler, D. J., Morris, N. S., & Winters, C. (1999). Simple physical model to study formation and physiology of biofilms on urethral catheters. Methods in Enzymology, 310, 494–501.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Tenke, P., et al. (2004). Bacterial biofilm formation on urologic devices and heparin coating as preventive strategy. International Journal of Antimicrobial Agents, 23 Suppl 1, S67–S74.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Chua, R. Y. R., et al. (2017). An in vitro urinary catheterization model that approximates clinical conditions for evaluation of innovations to prevent catheter associated urinary tract infections. The Journal of Hospital Infection, 97, 66.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Morris, N. S., Stickler, D. J., & Winters, C. (1997). Which indwelling urethral catheters resist encrustation by Proteus mirabilis biofilms? British Journal of Urology, 80(1), 58–63.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Curtin, J. J., & Donlan, R. M. (2006). Using bacteriophages to reduce formation of catheter-associated biofilms by Staphylococcus epidermidis. Antimicrobial Agents and Chemotherapy, 50(4), 1268–1275.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Lehman, S. M., & Donlan, R. M. (2015). Bacteriophage-mediated control of a two-species biofilm formed by microorganisms causing catheter-associated urinary tract infections in an in vitro urinary catheter model. Antimicrobial Agents and Chemotherapy, 59(2), 1127–1137.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Roberts, A. E., et al. (2015). The limitations of in vitro experimentation in understanding biofilms and chronic infection. Journal of Molecular Biology, 427(23), 3646–3661.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Purevdorj, B., Costerton, J. W., & Stoodley, P. (2002). Influence of hydrodynamics and cell signaling on the structure and behavior of Pseudomonas aeruginosa biofilms. Applied and Environmental Microbiology, 68(9), 4457–4464.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Heydorn, A., et al. (2000). Experimental reproducibility in flow-chamber biofilms. Microbiology, 146(Pt 10), 2409–2415.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Tolker-Nielsen, T., & Sternberg, C. (2011). Growing and analyzing biofilms in flow chambers. Current Protocols in Microbiology. Chapter 1: p. Unit 1B 2.Google Scholar
  104. 104.
    Nickel, J. C., et al. (1985). Antibiotic resistance of Pseudomonas aeruginosa colonizing a urinary catheter in vitro. European Journal of Clinical Microbiology, 4(2), 213–218.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Maeyama, R., et al. (2005). Novel bactericidal surface: Catechin-loaded surface-erodible polymer prevents biofilm formation. Journal of Biomedical Materials Research. Part A, 75(1), 146–155.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    McCoy, W. F., et al. (1981). Observations of fouling biofilm formation. Canadian Journal of Microbiology, 27(9), 910–917.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Turnbull, L., & Whitchurch, C. B. (2014). Motility assay: Twitching motility. Methods in Molecular Biology, 1149, 73–86.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Irwin, N. J., McCoy, C. P., & Carson, L. (2013). Effect of pH on the in vitro susceptibility of planktonic and biofilm-grown Proteus mirabilis to the quinolone antimicrobials. Journal of Applied Microbiology, 115(2), 382–389.CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Ceri, H., et al. (1999). The Calgary Biofilm Device: New technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. Journal of Clinical Microbiology, 37(6), 1771–1776.PubMedPubMedCentralGoogle Scholar
  110. 110.
    Meije, Y., et al. (2014). Daptomycin is effective as antibiotic-lock therapy in a model of Staphylococcus aureus catheter-related infection. The Journal of Infection, 68(6), 548–552.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Stickler, D., & Hughes, G. (1999). Ability of Proteus mirabilis to swarm over urethral catheters. European Journal of Clinical Microbiology & Infectious Diseases, 18(3), 206–208.CrossRefGoogle Scholar
  112. 112.
    Sabbuba, N. (2002). The migration of Proteus Mirabilis and other urinary tract pathogens over Foley catheters. BJU International, 89, 55–60.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Reddy, S. T., et al. (2011). Micropatterned surfaces for reducing the risk of catheter-associated urinary tract infection: An in vitro study on the effect of sharklet micropatterned surfaces to inhibit bacterial colonization and migration of uropathogenic Escherichia coli. Journal of Endourology, 25(9), 1547–1552.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Burns, J. R., & Finlayson, B. (1980). A proposal for a standard reference artificial urine in in vitro urolithiasis experiments. Investigative Urology, 18(2), 167–169.PubMedPubMedCentralGoogle Scholar
  115. 115.
    Brooks, T. (1997). A simple artificial urine for the growth of urinary pathogens. Letters in Applied Microbiology, 24, 203–206.CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Chutipongtanate, S., & Thongboonkerd, V. (2010). Systematic comparisons of artificial urine formulas for in vitro cellular study. Analytical Biochemistry, 402(1), 110–112.CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Grases, F., & Llobera, A. (1998). Experimental model to study sedimentary kidney stones. Micron, 29(2–3), 105–111.CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Christmas, K. G., et al. (2002). Aggregation and dispersion characteristics of calcium oxalate monohydrate: Effect of urinary species. Journal of Colloid and Interface Science, 256(1), 168–174.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Center for Biofilm EngineeringMontana State UniversityBozemanUSA
  2. 2.Center for Biofilm Engineering, Department of Chemical & Biological EngineeringMontana State UniversityBozemanUSA

Personalised recommendations