Biofilm Infections in Orthopedic Surgery and Their Impact on Commercial Product Development

  • David A. ArmbrusterEmail author


The biofilm nature of bacterial infections on orthopedic implants imparts antibiotic tolerance, which means that these infections often cannot be successfully treated with systemic antibiotics alone. These infections must instead be treated surgically, which comes with high financial costs and patient morbidity. Because of this, much industrial research and new product development effort has focused on technologies to prevent infection by preventing biofilm formation on implants. Implant surface modification and local antibiotic delivery are primary areas of technology development. Antimicrobial-eluting orthopedic trauma implants have been commercialized and appear to be clinically effective but have not yet enjoyed widespread commercial success. The primary barriers to clinical development of infection-resistant implants in orthopedics are not technical, but commercial and regulatory. The large size and high cost of clinical trials in orthopedics, combined with the fragmented nature of the orthopedic implant market and indication-specific regulatory approvals, make it unlikely that the market for any single implant design can support the cost of clinical data required for approval. The regulatory pathway for any individual product design, typically a function of product risk profile, is a key factor determining clinical data requirements and therefore development costs. By accounting for these non-clinical challenges early in the technology development cycle it may be possible for industry, in partnership with clinicians and regulatory bodies, to bring forward anti-biofilm technologies for orthopedic surgery implants.


Orthopedic Infection Commercial Implant Biofilm Economics Regulation 


  1. 1.
    Hörlein, H. (1935). The chemotherapy of infectious diseases caused by Protozoa and Bacteria. Proceedings of the Royal Society of Medicine, XXIX(313).Google Scholar
  2. 2.
    Chain, E., Florey, H. W., Gardner, A. D., et al. (1940). Penicillin as a chemotherapeutic agent. The Lancet, 1940, 226–228.CrossRefGoogle Scholar
  3. 3.
    Foulis, M. A., & Barr, J. B. (1937). Prontosil album in puerperal sepsis. British Medical Journal, 27(1937), 445–446.CrossRefGoogle Scholar
  4. 4.
    Abraham, E. P., Chain, E., Fletcher, C. M., et al. (1941). Further observations on penicillin. The Lancet, 1941, 177–188.CrossRefGoogle Scholar
  5. 5.
    Barber, M. (1947). Staphylococcal infection due to penicillin-resistant strains. British Medical Journal, 2(4534), 863–865.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Alekshun, M. N., & Levy, S. B. (2007). Molecular mechanisms of antibacterial multidrug resistance. Cell, 128(6), 1037–1050.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Stoodley, P., Ehrlich, G. D., Sedghizadeh, P. P., et al. (2011). Orthopaedic biofilm infections. Current Orthopaedic Practice, 22(6), 558–563.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Nana, A., Nelson, S. B., & McLaren, A. (2016). What’s new in musculoskeletal infection: Update on biofilms. The Journal of Bone and Joint Surgery. American Volume, 98(14), 1226–1234.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Voigt, J., Mosier, M., & Darouiche, R. (2015). Systematic review and meta-analysis of randomized controlled trials of antibiotics and antiseptics for preventing infection in people receiving primary total hip and knee prostheses. Antimicrobial Agents and Chemotherapy, 59(11), 6696–6707.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Namba, R. S., Inacio, M. C., & Paxton, E. W. (2013). Risk factors associated with deep surgical site infections after primary total knee arthroplasty: An analysis of 56,216 knees. The Journal of Bone and Joint Surgery. American Volume, 95(9), 775–782.CrossRefGoogle Scholar
  11. 11.
    Stall, A., Paryavi, E., Gupta, R., et al. (2013). Perioperative supplemental oxygen to reduce surgical site infection after open fixation of high-risk fractures: A randomized controlled pilot trial. Journal of Trauma and Acute Care Surgery, 75(4), 657–663.CrossRefGoogle Scholar
  12. 12.
    Bosse, M. J., Murray, C. K., Carlini, A. R., et al. (2017). Assessment of severe extremity wound bioburden at the time of definitive wound closure or coverage: Correlation with subsequent postclosure deep wound infection (bioburden study). Journal of Orthopaedic Trauma, 31(Suppl 1), S3–S9.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Urish, K. L., Bullock, A. G., Kreger, A. M., et al. (2018). A multicenter study of irrigation and debridement in Total knee arthroplasty Periprosthetic joint infection: Treatment failure is high. The Journal of Arthroplasty, 33(4), 1154–1159.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Grammatopoulos, G., Bolduc, M. E., Atkins, B. L., et al. (2017). Functional outcome of debridement, antibiotics and implant retention in periprosthetic joint infection involving the hip: A case-control study. The Bone & Joint Journal, 99-B(5), 614–622.CrossRefGoogle Scholar
  15. 15.
    Haddad, F. S., Sukeik, M., & Alazzawi, S. (2015). Is single-stage revision according to a strict protocol effective in treatment of chronic knee arthroplasty infections? Clinical Orthopaedics and Related Research, 473(1), 8–14.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Cooper, H. J., & Della Valle, C. J. (2013). The two-stage standard in revision total hip replacement. The Bone & Joint Journal, 95-B(11 Suppl A), 84–87.CrossRefGoogle Scholar
  17. 17.
    Thakore, R. V., Greenberg, S. E., Shi, H., et al. (2015). Surgical site infection in orthopedic trauma: A case-control study evaluating risk factors and cost. Journal of Clinical Orthopaedics & Trauma, 6(4), 220–226.CrossRefGoogle Scholar
  18. 18.
    Stambough, J. B., Nam, D., Warren, D. K., et al. (2017). Decreased hospital costs and surgical site infection incidence with a universal decolonization protocol in primary total joint arthroplasty. The Journal of Arthroplasty, 32(3), 728–734.e1.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Horn, J., Stelzner, K., Rudel, T., et al. (2017). Inside job: Staphylococcus aureus host-pathogen interactions. International Journal of Medical Microbiology, S1438-4221(17), 30316–30318.Google Scholar
  20. 20.
    de Mesy Bentley, K. L., Trombetta, R., Nishitani, K., et al. (2017). Evidence of Staphylococcus Aureus deformation, proliferation, and migration in canaliculi of live cortical bone in murine models of osteomyelitis. Journal of Bone and Mineral Research, 32(5), 985–990.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Williams, D. L., & Costerton, J. W. (2012). Using biofilms as initial inocula in animal models of biofilm-related infections. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 100(4), 1163–1169.CrossRefGoogle Scholar
  22. 22.
    Chiang, H. Y., Herwaldt, L. A., Blevins, A. E., et al. (2014). Effectiveness of local vancomycin powder to decrease surgical site infections: A meta-analysis. The Spine Journal, 14(3), 397–407.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Evaniew, N., Khan, M., Drew, B., et al. (2015). Intrawound vancomycin to prevent infections after spine surgery: A systematic review and meta-analysis. European Spine Journal, 24(3), 533–542.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Owen, M. T., Keener, E. M., Hyde, Z. B., et al. (2017). Intraoperative topical antibiotics for infection prophylaxis in pelvic and acetabular surgery. Journal of Orthopaedic Trauma, 31(11), 589–594.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Singh, K., Bauer, J. M., LaChaud, G. Y., et al. (2015). Surgical site infection in high-energy peri-articular tibia fractures with intra-wound vancomycin powder: A retrospective pilot study. Journal of Orthopaedics and Traumatology, 16(4), 287–291.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Firoozabadi, R., Miranda, S., & Tornetta, P., 3rd. (2017). Technique for placement of peri-implant antibiotics using antibiotic putty. Journal of Orthopaedic Trauma, 31(12), e442–e445.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Lawing, C. R., Lin, F. C., & Dahners, L. E. (2015). Local injection of aminoglycosides for prophylaxis against infection in open fractures. The Journal of Bone and Joint Surgery. American Volume, 97(22), 1844–1851.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Flierl, M. A., Culp, B. M., Okroj, K. T., et al. (2017). Poor outcomes of irrigation and debridement in acute periprosthetic joint infection with antibiotic-impregnated calcium sulfate beads. The Journal of Arthroplasty, 32(8), 2505–2507.CrossRefGoogle Scholar
  29. 29.
    Boxma, H., Broekhuizen, T., Patka, P., et al. (1996). Randomised controlled trial of single-dose antibiotic prophylaxis in surgical treatment of closed fractures: The Dutch Trauma Trial. Lancet, 347(9009), 1133–1137.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Bratzler, D. W., Dellinger, E. P., Olsen, K. M., et al. (2013). Clinical practice guidelines for antimicrobial prophylaxis in surgery. American Journal of Health-System Pharmacy, 70(3), 195–283.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Schweizer, M., Perencevich, E., McDanel, J., et al. (2013). Effectiveness of a bundled intervention of decolonization and prophylaxis to decrease Gram positive surgical site infections after cardiac or orthopedic surgery: Systematic review and meta-analysis. BMJ, 346, f2743.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Rasouli, M. R., Restrepo, C., Maltenfort, M. G., et al. (2014). Risk factors for surgical site infection following total joint arthroplasty. The Journal of Bone and Joint Surgery. American Volume, 96(18), e158.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Nelson, C. L., McLaren, A. C., McLaren, S. G., et al. (2005). Is aseptic loosening truly aseptic? Clinical Orthopaedics and Related Research, (437), 25–30.Google Scholar
  34. 34.
    Parvizi, J., Zmistowski, B., Berbari, E. F., et al. (2011). New definition for periprosthetic joint infection: From the Workgroup of the Musculoskeletal Infection Society. Clinical Orthopaedics and Related Research, 469(11), 2992–2994.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Deirmengian, C., Kardos, K., Kilmartin, P., et al. (2015). The alpha-defensin test for periprosthetic joint infection responds to a wide spectrum of organisms. Clinical Orthopaedics and Related Research, 473(7), 2229–2235.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Bonanzinga, T., Zahar, A., Dütsch, M., et al. (2017). How reliable is the alpha-defensin immunoassay test for diagnosing periprosthetic joint infection? A prospective study. Clinical Orthopaedics and Related Research, 475(2), 408–415.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Gehrke, T., Lausmann, C., Citak, M., et al. (2018). The accuracy of the alpha defensin lateral flow device for diagnosis of periprosthetic joint infection: Comparison with a gold standard. The Journal of Bone and Joint Surgery. American Volume, 100(1), 42–48.CrossRefGoogle Scholar
  38. 38.
    Vincent, J. L., Brealey, D., Libert, N., et al. (2015). Rapid diagnosis of infection in the critically ill, a multicenter study of molecular detection in bloodstream infections, pneumonia, and sterile site infections. Critical Care Medicine, 43(11), 2283–2291.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Greenwood-Quaintance, K. E., Uhl, J. R., Hanssen, A. D., et al. (2014). Diagnosis of prosthetic joint infection by use of PCR-electrospray ionization mass spectrometry. Journal of Clinical Microbiology, 52(2), 642–649.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Rasouli, M. R., Harandi, A. A., Adeli, B., et al. (2012). Revision total knee arthroplasty: Infection should be ruled out in all cases. The Journal of Arthroplasty, 27(6), 1239–43.e1–2.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Levin, P. D. (1975). The effectiveness of various antibiotics in methyl methacrylate. Journal of Bone and Joint Surgery. British Volume (London), 57(2), 234–237.CrossRefGoogle Scholar
  42. 42.
    Logoluso, N., Drago, L., Gallazzi, E., et al. (2016). Calcium-based, antibiotic-loaded bone substitute as an implant coating: A pilot clinical study. Journal of Bone and Joint Infection, 1, 59–64.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Antoci, V., Jr., Adams, C. S., Hickok, N. J., et al. (2007). Vancomycin bound to Ti rods reduces periprosthetic infection: Preliminary study. Clinical Orthopaedics and Related Research, 461, 88–95.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Liu, L., Bhatia, R., & Webster, T. J. (2017). Atomic layer deposition of nano-TiO2 thin films with enhanced biocompatibility and antimicrobial activity for orthopedic implants. International Journal of Nanomedicine, 12, 8711–8723.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Jaggessar, A., Shahali, H., Mathew, A., et al. (2017). Bio-mimicking nano and micro-structured surface fabrication for antibacterial properties in medical implants. Journal of Nanobiotechnology, 15(1), 64.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Alt, V. (2017). Antimicrobial coated implants in trauma and orthopaedics-A clinical review and risk-benefit analysis. Injury, 48(3), 599–607.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Wahlig, H., Dingeldein, E., Bergmann, R., et al. (1978). The release of gentamicin from polymethylmethacrylate beads. An experimental and pharmacokinetic study. Journal of Bone and Joint Surgery. British Volume (London), 60-B(2), 270–275.CrossRefGoogle Scholar
  48. 48.
    Hardes, J., Gebert, C., Schwappach, A., et al. (2006). Characteristics and outcome of infections associated with tumor endoprostheses. Archives of Orthopaedic and Trauma Surgery, 126(5), 289–296.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Hardes, J., Henrichs, M. P., Hauschild, G., et al. (2017). Silver-coated megaprosthesis of the proximal tibia in patients with sarcoma. The Journal of Arthroplasty, 32(7), 2208–2213.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Fuchs, T., Stange, R., Schmidmaier, G., et al. (2011). The use of gentamicin-coated nails in the tibia: Preliminary results of a prospective study. Archives of Orthopaedic and Trauma Surgery, 131(10), 1419–1425.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Schmidmaier, G., Kerstan, M., Schwabe, P., et al. (2017). Clinical experiences in the use of a gentamicin-coated titanium nail in tibia fractures. Injury, 48(10), 2235–2241.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Parvizi, J., Tan, T. L., Goswami, K., et al. (2018). The 2018 definition of periprosthetic hip and knee infection: An evidence-based and validated criteria. The Journal of Arthroplasty, 33(5), 1309–1314.e2.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Stoodley, P., Nistico, L., Johnson, S., et al. (2008). (2008) Direct demonstration of viable Staphylococcus aureus biofilms in an infected total joint arthroplasty. A case report. The Journal of Bone and Joint Surgery. American Volume, 90(8), 1751–1758.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Boucher, H. W., Wilcox, M., Talbot, G. H., et al. (2017). Once-weekly dalbavancin versus daily conventional therapy for skin infection. The New England Journal of Medicine, 370(23), 2169–2179.CrossRefGoogle Scholar
  55. 55.
    Sealed Envelope Ltd. (2012). Power calculator for binary outcome superiority trial.
  56. 56.
    Sendi, P., Rohrbach, M., Graber, P., et al. (2006). Staphylococcus aureus small colony variants in prosthetic joint infection. Clinical Infectious Diseases, 43(8), 961–967.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Romanò, C. L., Malizos, K., Capuano, N., et al. (2016). Does an antibiotic-loaded hydrogel coating reduce early post-surgical infection after joint arthroplasty? Journal of Bone and Joint Infection, 1, 34–41.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Malizos, K., Blauth, M., Danita, A., et al. (2017). Fast-resorbable antibiotic-loaded hydrogel coating to reduce post-surgical infection after internal osteosynthesis: A multicenter randomized controlled trial. Journal of Orthopaedics and Traumatology, 18(2), 159–169.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Food and Drug Administration Center for Devices and Radiological Health. (2007). Draft guidance for industry and FDA staff – premarket notification [510(k)] submissions for medical devices that include antimicrobial agents. Retrieved from
  60. 60.
    Kummer, K. M., Taylor, E. N., Durmas, N. G., et al. (2013). Effects of different sterilization techniques and varying anodized TiO2 nanotube dimensions on bacteria growth. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 101(5), 677–688.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Bagherifard, S., Hickey, D. J., de Luca, A. C., et al. (2015). The influence of nanostructured features on bacterial adhesion and bone cell functions on severely shot peened 316L stainless steel. Biomaterials, 73, 185–197.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Bhardwaj, G., & Webster, T. J. (2017). Reduced bacterial growth and increased osteoblast proliferation on titanium with a nanophase TiO2 surface treatment. International Journal of Nanomedicine, 12, 363–369.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Food and Drug Administration Center for Devices and Radiological Health. (2016). Guidance for industry and food and drug administration staff - Factors to consider when making benefit-risk determinations in medical device premarket approval and de novo classifications. Retrieved from
  64. 64.
    Phillips, K. S. (2018). What can we learn about medical device associated infection pathogenesis from skin explant models? Presentation at CBE Conference on Anti-Biofilm Technologies: Pathways to Product Development, Arlington VA, 7 Feb 2018.Google Scholar
  65. 65.
  66. 66.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.DePuy Synthes Biomaterials R&DWest ChesterUSA

Personalised recommendations