100 years of Weyl’s Law

  • Victor IvriiEmail author


We discuss the asymptotics of the eigenvalue counting function for partial differential operators and related expressions paying the most attention to the sharp asymptotics. We consider Weyl asymptotics, asymptotics with Weyl principal parts and correction terms and asymptotics with non-Weyl principal parts. Semiclassical microlocal analysis, propagation of singularities and related dynamics play crucial role.

We start from the general theory, then consider Schrödinger and Dirac operators with the strong magnetic field and, finally, applications to the asymptotics of the ground state energy of heavy atoms and molecules with or without a magnetic field.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [ANPS]
    W. Arendt W., R. Nittka R., W. Peter W. and F. Steiner. Weyl’s Law: Spectral Properties of the Laplacian in Mathematics and Physics, pp. 1–71, in Mathematical Analysis of Evolution, Information, and Complexity, by W. Arendt and W.P. Schleich, Wiley-VCH, 2009.Google Scholar
  2. [Av]
    V. G. Avakumovič. Über die eigenfunktionen auf geschlossen riemannschen mannigfaltigkeiten. Math. Z., 65:324–344 (1956).MathSciNetCrossRefGoogle Scholar
  3. [Ba]
    V. Bach. Error bound for the Hartree-Fock energy of atoms and molecules. Commun. Math. Phys. 147:527–548 (1992).MathSciNetCrossRefGoogle Scholar
  4. [C1]
    T. Carleman. Propriétes asymptotiques des fonctions fondamentales des membranes vibrantes. In C. R. 8-ème Congr. Math. Scand., Stockholm, 1934, pages 34–44, Lund (1935).Google Scholar
  5. [C2]
    T. Carleman. Über die asymptotische Verteilung der Eigenwerte partieller Differentialgleichungen. Ber. Sachs. Acad. Wiss. Leipzig, 88:119–132 (1936).Google Scholar
  6. [Cour]
    R. Courant. Über die Eigenwerte bei den Differentialgleichungen der mathematischen Physik. Mat. Z., 7:1–57 (1920).Google Scholar
  7. [DG]
    J. J. Duistermaat and V. Guillemin. The spectrum of positive elliptic operators and periodic bicharacteristics. Invent. Math., 29(1):37–79 (1975).MathSciNetCrossRefGoogle Scholar
  8. [GS]
    G. M. Graf and J. P. Solovej. A correlation estimate with applications to quantum systems with Coulomb interactions. Rev. Math. Phys., 6(5a):977–997 (1994). Reprinted in The state of matter a volume dedicated to E. H. Lieb, Advanced series in mathematical physics, 20, M. Aizenman and H. Araki (Eds.), 142–166, World Scientific 1994.Google Scholar
  9. [HA]
    A. Hassel; V. Ivrii Spectral asymptotics for the semiclassical Dirichlet to Neumann operator. J. of Spectral Theory 7(3):881–905 (2017).Google Scholar
  10. [Hör1]
    L. Hörmander. The spectral function of an elliptic operator. Acta Math., 121:193–218 (1968).MathSciNetCrossRefGoogle Scholar
  11. [Hör2]
    L. Hörmander. On the Riesz means of spectral functions and eigenfunction expansions for elliptic differential operators. In Yeshiva Univ. Conf., November 1966, volume 2 of Ann. Sci. Conf. Proc., pages 155–202. Belfer Graduate School of Sci. (1969).Google Scholar
  12. [Ivr1]
    V. Ivrii. Second term of the spectral asymptotic expansion for the Laplace-Beltrami operator on manifold with boundary. Funct. Anal. Appl., 14(2):98–106 (1980).Google Scholar
  13. [Ivr2]
    V. Ivrii. Accurate spectral asymptotics for elliptic operators that act in vector bundles. Funct. Anal. Appl., 16(2):101–108 (1982).Google Scholar
  14. [Ivr3]
    V. Ivrii. Microlocal Analysis and Precise Spectral Asymptotics, Springer-Verlag, SMM, 1998, xv+731.Google Scholar
  15. [Ivr4]
    V. Ivrii. Microlocal Analysis and Sharp Spectral AsymptoticsGoogle Scholar
  16. [Ivr5]
    V. Ivrii Spectral asymptotics for fractional Laplacians.Google Scholar
  17. [Lev1]
    B. M. Levitan. On the asymptotic behaviour of the spectral function of the second order elliptic equation. Izv. AN SSSR, Ser. Mat., 16(1):325–352 (1952) (in Russian).Google Scholar
  18. [Lev2]
    B. M. Levitan. Asymptotic behaviour of the spectral function of elliptic operator. Russian Math. Surveys, 26(6):165–232 (1971).Google Scholar
  19. [L]
    E. H. Lieb. The stability of matter: from atoms to stars (Selecta). Springer-Verlag (1991).Google Scholar
  20. [LSY1]
    E. H. Lieb, J. P. Solovej and J. Yngvarsson. Asymptotics of heavy atoms in high magnetic fields: I. Lowest Landau band regions. Comm. Pure Appl. Math. 47:513–591 (1994).Google Scholar
  21. [LSY2]
    E. H. Lieb, J. P. Solovej and J. Yngvarsson. Asymptotics of heavy atoms in high magnetic fields: II. Semiclassical regions. Comm. Math. Phys., 161: 77–124 (1994).MathSciNetCrossRefGoogle Scholar
  22. [Lor]
    H. A. Lorentz. Alte und neue Fragen der Physik. Physikal. Zeitschr., 11, 1234–1257 (1910).Google Scholar
  23. [MR]
    M. Melgaard and G. Rozenblum. Eigenvalue asymptotics for weakly perturbed Dirac and Schrödinger operators with constant magnetic fields of full rank. Comm. Partial Differential Equations 28 (2003), no. 3–4, 697–736.MathSciNetCrossRefGoogle Scholar
  24. [N]
    S. Nonnenmacher, Counting stationary modes: a discrete view of geometry and dynamics, Talk at Weyl Law at 100, a workshop at the Fields Institute, September 19-21, (2012)
  25. [Rai1]
    G. D. Raikov, Eigenvalue asymptotics for the Schrödinger operator in strong constant magnetic fields, Commun. P.D.E. 23 (1998), 1583–1620.Google Scholar
  26. [Rai2]
    G. D. Raikov, Eigenvalue asymptotics for the Pauli operator in strong non-constant magnetic fields, Ann. Inst. Fourier 49, (1999), 1603–1636.MathSciNetCrossRefGoogle Scholar
  27. [RW]
    G. D. Raikov, S. Warzel, Quasiclassical versus non-classical spectral asymptotics for magnetic Schrödinger operators with decreasing electric potentials, Rev. Math. Phys. 14 (2002), 1051–1072.MathSciNetCrossRefGoogle Scholar
  28. [Roz1]
    G. Rozenblioum. The distribution of the discrete spectrum of singular differential operators. English transl.: Sov. Math., Izv. VUZ 20(1):63-71 (1976).Google Scholar
  29. [RSS]
    G. V. Rozenblioum, M. Z. Solomyak, and M. A. Shubin. Spectral theory of differential operators. Partial Differential Equations VII, EMS volume 34 (1994), Springer-Verlag.Google Scholar
  30. [RT]
    G. Rozenblum and G. Tashchiyan. On the spectral properties of the perturbed Landau Hamiltonian. Comm. Partial Differential Equations 33 (2008), no. 4–6, 1048–1081.MathSciNetCrossRefGoogle Scholar
  31. [SV1]
    Yu. Safarov and D. Vassiliev. Asymptotic distribution of eigenvalues of differential operators. AMS Transl., Ser. 2, 150 (1992).Google Scholar
  32. [SV2]
    Yu. Safarov and D. Vassiliev. The Asymptotic Distribution of Eigenvalues of Partial Differential Operators, Translations of Mathematical Monographs. AMS, 155 (1997).Google Scholar
  33. [See1]
    R. Seeley. A sharp asymptotic estimate for the eigenvalues of the Laplacian in a domain of \({\varvec {R}}^3\). Advances in Math., 102(3):244–264 (1978).Google Scholar
  34. [See2]
    R. Seeley. An estimate near the boundary for the spectral function of the Laplace operator. Amer. J. Math., 102(3):869–902 (1980).Google Scholar
  35. [Shar]
    E. Shargorodsky On negative eigenvalues of two-dimensional Schrödinger operators. Proc. Lond. Math. Soc. (3) 108 (2014), no. 2, 441–483.Google Scholar
  36. [ST]
    M. A. Shubin and V. A. Tulovskii On the asymptotic distribution of eigenvalues of p.d.o. in \({\mathbb{R}}^n\). Math. USSR Sbornik, 21:565–573 (1973).Google Scholar
  37. [Som]
    A. Sommerfeld. Die Greensche Funktion der Schwingungsgleichung für ein beliebiges Gebiet. Physikal. Zeitschr., 11, 1057–1066 (1910).Google Scholar
  38. [W1]
    H. Weyl. Über die Asymptotische Verteilung der Eigenwerte. Nachr. Konigl. Ges. Wiss. Göttingen, 110–117 (1911).Google Scholar
  39. [W2]
    H. Weyl. Das asymptotische Verteilungsgesetz linearen partiellen Differentialgleichungen. Math. Ann., 71:441–479 (1912).MathSciNetCrossRefGoogle Scholar
  40. [W3]
    H. Weyl. Über die Abhängigkeit der Eigenschwingungen einer Membran von deren Begrenzung. J. Für die Angew. Math., 141:1–11 (1912).Google Scholar
  41. [W4]
    H. Weyl. Über die Randwertaufgabe der Strahlungstheorie und asymptotische Spektralgeometrie. J. Reine Angew. Math., 143, 177–202 (1913).Google Scholar
  42. [W5]
    H. Weyl. Das asymptotische Verteilungsgesetz der Eigenschwingungen eines beliebig gestalteten elastischen Körpers. Rend. Circ. Mat. Palermo. 39:1–49 (1915).Google Scholar
  43. [W6]
    H. Weyl. Quantenmechanik und Gruppentheorie, Zeitschrift für Physik, 46:1–46 (1927) (see The Theory of Groups and Quantum Mechanics, Dover, 1950, xxiv+422).Google Scholar
  44. [W7]
    H. Weyl. Ramifications, old and new, of the eigenvalue problem. Bull. Amer. Math. Soc. 56(2):115–139 (1950).Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of TorontoTorontoCanada

Personalised recommendations