Degenerative Night-Blinding Disorders and Cone and Cone–Rod Dystrophies

  • Wajiha Jurdi Kheir
  • Minzhong YuEmail author
  • Alfonso Senatore
  • Alessandro Racioppi
  • Roberto Gattegna
  • Donnell Creel
  • Alessandro Iannaccone


This chapter summarizes the application of electrophysiologic tests in retinitis pigmentosa, Leber's congenital amaurosis, enhanced S-Cone syndrome, choroideremia, gyrate atrophy of choroid and retina, late onset retinal degeneration, Bietti’s crystalline dystrophy, cone dystrophies, and cone-rod dystrophies. 


Electroretinogram Retinitis pigmentosa Leber's congenital amaurosis Enhanced S-Cone syndrome Choroideremia Gyrate atrophy of choroid and retina Late onset retinal degeneration Bietti’s crystalline dystrophy cone dystrophies Cone-rod dystrophies 


  1. 1.
    Iannaccone A, Berdia J. Retinitis pigmentosa. 2017. Review No. 21. Danbury, CT:National Organization for Rare Disorders, Inc.;
  2. 2.
    RetNet – Retinal Information Network., 2019.
  3. 3.
    Nagy D, et al. Long-term follow-up of retinitis pigmentosa patients with multifocal electroretinography. Invest Ophthalmol Vis Sci. 2008;49(10):4664–71.PubMedGoogle Scholar
  4. 4.
    Walia S, et al. Visual acuity in patients with Leber’s congenital amaurosis and early childhood-onset retinitis pigmentosa. Ophthalmology. 2010;117(6):1190–8.PubMedGoogle Scholar
  5. 5.
    den Hollander AI, et al. Leber congenital amaurosis: genes, proteins and disease mechanisms. Prog Retin Eye Res. 2008;27(4):391–419.Google Scholar
  6. 6.
    Stone EM. Leber congenital amaurosis – a model for efficient genetic testing of heterogeneous disorders: LXIV Edward Jackson Memorial Lecture. Am J Ophthalmol. 2007;144(6):791–811.PubMedGoogle Scholar
  7. 7.
    Pennesi ME, et al. Residual electroretinograms in young Leber congenital amaurosis patients with mutations of AIPL1. Invest Ophthalmol Vis Sci. 2011;52(11):8166–73.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Occelli LM, et al. CrxRdy cat: a large animal model for CRX-associated Leber congenital Amaurosis. Invest Ophthalmol Vis Sci. 2016;57(8):3780–92.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Chang B. Mouse models as tools to identify genetic pathways for retinal degeneration, as exemplified by Leber’s congenital Amaurosis. Methods Mol Biol. 2016;1438:417–30.PubMedGoogle Scholar
  10. 10.
    Khan AO, et al. Peripherin mutations cause a distinct form of recessive Leber congenital amaurosis and dominant phenotypes in asymptomatic parents heterozygous for the mutation. Br J Ophthalmol. 2016;100(2):209–15.PubMedGoogle Scholar
  11. 11.
    Kuniyoshi K, et al. Longitudinal clinical course of three Japanese patients with Leber congenital amaurosis/early-onset retinal dystrophy with RDH12 mutation. Doc Ophthalmol. 2014;128(3):219–28.PubMedGoogle Scholar
  12. 12.
    Iannaccone A, et al. Treatment of adult-onset acute macular retinoschisis in enhanced S-cone syndrome with oral acetazolamide. Am J Ophthalmol. 2009;147:307–12.PubMedGoogle Scholar
  13. 13.
    Sharon D, et al. Shared mutations in NR2E3 in enhanced S-cone syndrome, Goldmann-Favre syndrome, and many cases of clumped pigmentary retinal degeneration. Arch Ophthalmol. 2003;121(9):1316–23.PubMedGoogle Scholar
  14. 14.
    Milam AH, et al. The nuclear receptor NR2E3 plays a role in human retinal photoreceptor differentiation and degeneration. Proc Natl Acad Sci U S A. 2002;99(1):473–8.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Haider NB, et al. Mutation of a nuclear receptor gene, NR2E3, causes enhanced S cone syndrome, a disorder of retinal cell fate. Nat Genet. 2000;24(2):127–31.PubMedGoogle Scholar
  16. 16.
    Hood DC, et al. Enhanced S cone syndrome: evidence for an abnormally large number of S cones. Vision Res. 1995;35(10):1473–81.PubMedGoogle Scholar
  17. 17.
    Haider NB, Naggert JK, Nishina PM. Excess cone cell proliferation due to lack of a functional NR2E3 causes retinal dysplasia and degeneration in rd7/rd7 mice. Hum Mol Genet. 2001;10(16):1619–26.PubMedGoogle Scholar
  18. 18.
    Pachydaki SI, et al. Long-term follow-up in enhanced s-cone syndrome. Retin Cases Brief Rep. 2009;3(2):118–20.PubMedGoogle Scholar
  19. 19.
    Genead MA, Fishman GA, McAnany JJ. Efficacy of topical dorzolamide for treatment of cystic macular lesions in a patient with enhanced S-cone syndrome. Doc Ophthalmol. 2010;121(3):231–40.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Kiszkielis M, Lubinski W, Penkala K. Topical dorzolamide treatment of macular cysts in the enhanced S-cone syndrome patient. Doc Ophthalmol. 2013;126(3):241–6.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Marmor MF, et al. Diagnostic clinical findings of a new syndrome with night blindness, maculopathy, and enhanced S cone sensitivity. Am J Ophthalmol. 1990;110(2):124–34.PubMedGoogle Scholar
  22. 22.
    Jacobson SG, et al. SWS (blue) cone hypersensitivity in a newly identified retinal degeneration. Invest Ophthalmol Vis Sci. 1990;31(5):827–38.PubMedGoogle Scholar
  23. 23.
    Kuniyoshi K, et al. New truncation mutation of the NR2E3 gene in a Japanese patient with enhanced S-cone syndrome. Jpn J Ophthalmol. 2016;60(6):476–85.PubMedGoogle Scholar
  24. 24.
    Kuniyoshi K, et al. Novel mutations in enhanced S-cone syndrome. Ophthalmology. 2013;120(2):431 e1–6.Google Scholar
  25. 25.
    Audo I, et al. Phenotypic variation in enhanced S-cone syndrome. Invest Ophthalmol Vis Sci. 2008;49(5):2082–93.PubMedGoogle Scholar
  26. 26.
    Seabra MC, et al. Purification of component A of Rab geranylgeranyl transferase: possible identity with the choroideremia gene product. Cell. 1992;70(6):1049–57.PubMedGoogle Scholar
  27. 27.
    van den Hurk JA, et al. Molecular basis of choroideremia (CHM): mutations involving the Rab escort protein-1 (REP-1) gene. Hum Mutat. 1997;9(2):110–7.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Pfeffer SR. Rab GTPases: master regulators of membrane trafficking. Curr Opin Cell Biol. 1994;6(4):522–6.PubMedGoogle Scholar
  29. 29.
    Sanchez-Alcudia R, et al. A comprehensive analysis of choroideremia: from genetic characterization to clinical practice. PLoS One. 2016;11(4):e0151943.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Ben Charfeddine I, et al. Genetic study in a tunisian family revealed IVS1+1G>A mutation in the CHM gene. Ann Biol Clin (Paris). 2015;73(4):469–73.Google Scholar
  31. 31.
    Contestabile MT, et al. Clinical and genetic studies in a family with a new splice-site mutation in the choroideremia gene. Mol Vis. 2014;20:325–33.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Mura M, et al. Clinical and functional findings in choroideremia due to complete deletion of the CHM gene. Arch Ophthalmol. 2007;125(8):1107–13.PubMedGoogle Scholar
  33. 33.
    Sergeev YV, et al. The functional effect of pathogenic mutations in Rab escort protein 1. Mutat Res. 2009;665(1–2):44–50.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Roberts MF, et al. Retrospective, longitudinal, and cross sectional study of visual acuity impairment in choroideraemia. Br J Ophthalmol. 2002;86(6):658–62.PubMedPubMedCentralGoogle Scholar
  35. 35.
    MacDonald IM, et al. Choroideremia. Gene Reviews 2008 May 28, 2008 April 15, 2009]. Available from:
  36. 36.
    Fulton AB, Hansen RM. The relation of rhodopsin and scotopic sensitivity in choroideremia. Am J Ophthalmol. 1987;104(5):524–32.PubMedGoogle Scholar
  37. 37.
    MacDonald IM, et al. Histopathology of the retinal pigment epithelium of a female carrier of choroideremia. Can J Ophthalmol. 1997;32(5):329–33.PubMedGoogle Scholar
  38. 38.
    Perez-Cano HJ, Garnica-Hayashi RE, Zenteno JC. CHM gene molecular analysis and X-chromosome inactivation pattern determination in two families with choroideremia. Am J Med Genet A. 2009;149A(10):2134–40.PubMedGoogle Scholar
  39. 39.
    Ponjavic V, et al. Phenotype variations within a choroideremia family lacking the entire CHM gene. Ophthalmic Genet. 1995;16(4):143–50.PubMedGoogle Scholar
  40. 40.
    Renner AB, et al. Choroideremia: variability of clinical and electrophysiological characteristics and first report of a negative electroretinogram. Ophthalmology. 2006;113(11):2066 e1–10.Google Scholar
  41. 41.
    Chen MS, et al. Blood-aqueous barrier function in a patient with choroideremia. J Formos Med Assoc. 2010;109(2):167–71.PubMedGoogle Scholar
  42. 42.
    Renner AB, et al. Progression of retinal pigment epithelial alterations during long-term follow-up in female carriers of choroideremia and report of a novel CHM mutation. Arch Ophthalmol. 2009;127(7):907–12.PubMedGoogle Scholar
  43. 43.
    Iino Y, et al. A novel mutation (967-970+2)delAAAGGT in the choroideremia gene found in a Japanese family and related clinical findings. Jpn J Ophthalmol. 2008;52(4):289–97.PubMedGoogle Scholar
  44. 44.
    Sieving PA, Niffenegger JH, Berson EL. Electroretinographic findings in selected pedigrees with choroideremia. Am J Ophthalmol. 1986;101(3):361–7.PubMedGoogle Scholar
  45. 45.
    Yau RJ, et al. Choroideremia carriers maintain a normal electro-oculogram (EOG). Doc Ophthalmol. 2007;114(3):147–51.PubMedGoogle Scholar
  46. 46.
    Vajaranant TS, et al. Detection of mosaic retinal dysfunction in choroideremia carriers electroretinographic and psychophysical testing. Ophthalmology. 2008;115(4):723–9.PubMedGoogle Scholar
  47. 47.
    Preising MN, et al. Fundus autofluorescence in carriers of choroideremia and correlation with electrophysiologic and psychophysical data. Ophthalmology. 2009;116(6):1201–9 e1-2.PubMedGoogle Scholar
  48. 48.
    Cheung MC, et al. Detection of localized retinal dysfunction in a choroideremia carrier. Am J Ophthalmol. 2004;137(1):189–91.PubMedGoogle Scholar
  49. 49.
    Wu J, et al. The ornithine aminotransferase (OAT) locus is linked and distal to D10S20 on the long arm of chromosome 10. Cytogenet Cell Genet. 1988;48(2):126–7.PubMedGoogle Scholar
  50. 50.
    Hayden MR, et al. A polymorphic DNA marker that represents a conserved expressed sequence in the region of the Huntington disease gene. Am J Hum Genet. 1988;42(1):125–31.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Mitchell GA, et al. Human ornithine-delta-aminotransferase. cDNA cloning and analysis of the structural gene. J Biol Chem. 1988;263(28):14288–95.PubMedGoogle Scholar
  52. 52.
    Rao GN, Cotlier E. Ornithine delta-aminotransferase activity in retina and other tissues. Neurochem Res. 1984;9(4):555–62.PubMedGoogle Scholar
  53. 53.
    Ratzlaff K, Baich A. Comparison of ornithine aminotransferase activities in the pigment epithelium and retina of vertebrates. Comp Biochem Physiol B. 1987;88(1):35–7.PubMedGoogle Scholar
  54. 54.
    Takki K. Gyrate atrophy of the choroid and retina associated with hyperornithinaemia. Br J Ophthalmol. 1974;58(1):3–23.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Takki K, Simell O. Genetic aspects in gyrate atrophy of the choroid and retina with hyperornithinaemia. Br J Ophthalmol. 1974;58(11):907–16.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Simell O, Takki K. Raised plasma-ornithine and gyrate atrophy of the choroid and retina. Lancet. 1973;1(7811):1031–3.PubMedGoogle Scholar
  57. 57.
    Kaiser-Kupfer MI, Caruso RC, Valle D. Gyrate atrophy of the choroid and retina: further experience with long-term reduction of ornithine levels in children. Arch Ophthalmol. 2002;120(2):146–53.PubMedGoogle Scholar
  58. 58.
    Feldman RB, et al. Epiretinal membranes and cystoid macular edema in gyrate atrophy of the choroid and retina. Retina. 1989;9(2):139–42.PubMedGoogle Scholar
  59. 59.
    Takki KK, Milton RC. The natural history of gyrate atrophy of the choroid and retina. Ophthalmology. 1981;88(4):292–301.PubMedGoogle Scholar
  60. 60.
    Renner AB, et al. Gyrate atrophy: clinical and genetic findings in a female without arginine-restricted diet during her first 39 years of life and report of a new OAT gene mutation. Doc Ophthalmol. 2012;125(1):81–9.PubMedGoogle Scholar
  61. 61.
    Peltola KE, et al. Ophthalmologic heterogeneity in subjects with gyrate atrophy of choroid and retina harboring the L402P mutation of ornithine aminotransferase. Ophthalmology. 2001;108(4):721–9.PubMedGoogle Scholar
  62. 62.
    Braham IZ, et al. Multimodal imaging of foveoschisis and macular pseudohole associated with gyrate atrophy: a family report. BMC Ophthalmol. 2018;18(1):89.Google Scholar
  63. 63.
    Katagiri S, et al. OAT mutations and clinical features in two Japanese brothers with gyrate atrophy of the choroid and retina. Doc Ophthalmol. 2014;128(2):137–48.PubMedGoogle Scholar
  64. 64.
    Mehta MC, et al. Gyrate atrophy of the choroid and retina in a 5-year-old girl. Acta Ophthalmol. 1991;69(6):810–4.Google Scholar
  65. 65.
    Raitta C, Carlson S, Vannas-Sulonen K. Gyrate atrophy of the choroid and retina: ERG of the neural retina and the pigment epithelium. Br J Ophthalmol. 1990;74(6):363–7.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Hayward C, et al. Mutation in a short-chain collagen gene, CTRP5, results in extracellular deposit formation in late-onset retinal degeneration: a genetic model for age-related macular degeneration. Hum Mol Genet. 2003;12(20):2657–67.Google Scholar
  67. 67.
    Kuntz CA, et al. Sub-retinal pigment epithelial deposits in a dominant late-onset retinal degeneration. Invest Ophthalmol Vis Sci. 1996;37(9):1772–82.Google Scholar
  68. 68.
    Milam AH, et al. Dominant late-onset retinal degeneration with regional variation of sub-retinal pigment epithelium deposits, retinal function, and photoreceptor degeneration. Ophthalmology. 2000;107(12):2256–66.PubMedGoogle Scholar
  69. 69.
    Jacobson SG, et al. Phenotypic marker for early disease detection in dominant late-onset retinal degeneration. Invest Ophthalmol Vis Sci. 2001;42(8):1882–90.PubMedGoogle Scholar
  70. 70.
    Duvall J, et al. Extensive subretinal pigment epithelial deposit in two brothers suffering from dominant retinitis pigmentosa. A histopathological study. Graefes Arch Clin Exp Ophthalmol. 1986;224(3):299–309.PubMedGoogle Scholar
  71. 71.
    Papastavrou VT, et al. Improvement of retinal function in L-ORD after prolonged dark adaptation. Can J Ophthalmol. 2015;50(2):112–8.PubMedGoogle Scholar
  72. 72.
    Soumplis V, et al. Phenotypic findings in C1QTNF5 retinopathy (late-onset retinal degeneration). Acta Ophthalmol. 2013;91(3):e191–5.PubMedGoogle Scholar
  73. 73.
    Vincent A, et al. The characterization of retinal phenotype in a family with C1QTNF5-related late-onset retinal degeneration. Retina. 2012;32(8):1643–51.PubMedGoogle Scholar
  74. 74.
    Jiao X, et al. Identification and population history of CYP4V2 mutations in patients with Bietti crystalline corneoretinal dystrophy. Eur J Hum Genet. 2017;25(4):461–71.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Li A, et al. Bietti crystalline corneoretinal dystrophy is caused by mutations in the novel gene CYP4V2. Am J Hum Genet. 2004;74(5):817–26.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Ng DS, et al. Genetics of Bietti crystalline dystrophy. Asia Pac J Ophthalmol (Phila). 2016;5(4):245–52.Google Scholar
  77. 77.
    Lee J, et al. The metabolism of fatty acids in human Bietti crystalline dystrophy. Invest Ophthalmol Vis Sci. 2001;42(8):1707–14.PubMedGoogle Scholar
  78. 78.
    Lee J, et al. Identification, isolation, and characterization of a 32-kDa fatty acid-binding protein missing from lymphocytes in humans with Bietti crystalline dystrophy (BCD). Mol Genet Metab. 1998;65(2):143–54.PubMedGoogle Scholar
  79. 79.
    Lai TY, et al. Genotype phenotype analysis of Bietti’s crystalline dystrophy in patients with CYP4V2 mutations. Invest Ophthalmol Vis Sci. 2007;48(11):5212–20.PubMedGoogle Scholar
  80. 80.
    Bernauer W, Daicker B. Bietti’s corneal-retinal dystrophy. A 16-year progression. Retina. 1992;12(1):18–20.PubMedGoogle Scholar
  81. 81.
    Vargas M, et al. Bietti crystalline dystrophy. In: Adam MP, et al., editors. GeneReviews (R). University of Washington, Seattle; 1993.Google Scholar
  82. 82.
    Fuerst NM, et al. Detailed functional and structural phenotype of Bietti crystalline dystrophy associated with mutations in CYP4V2 complicated by choroidal neovascularization. Ophthalmic Genet. 2016;37(4):445–52.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Akincioglu D, et al. Objective determination of retinal function in Bietti crystalline retinopathy. Turk J Ophthalmol. 2016;46(3):144–7.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Raoof N, Vincent AL. Novel gene mutation in a patient with Bietti crystalline dystrophy without corneal deposits. Clin Exp Ophthalmol. 2017;45(4):421–4.PubMedGoogle Scholar
  85. 85.
    Halford S, et al. Detailed phenotypic and genotypic characterization of bietti crystalline dystrophy. Ophthalmology. 2014;121(6):1174–84.PubMedGoogle Scholar
  86. 86.
    Rossi S, et al. Clinical and genetic features in Italian Bietti crystalline dystrophy patients. Br J Ophthalmol. 2013;97(2):174–9.PubMedGoogle Scholar
  87. 87.
    Manzouri B, et al. Bietti crystalline retinopathy: report of retinal crystal deposition in male adolescent siblings. Arch Ophthalmol. 2012;130(11):1470–3.PubMedGoogle Scholar
  88. 88.
    Okialda KA, et al. Bietti crystalline dystrophy. In: Pagon RA, et al., editors. GeneReviews(R). University of Washington, Seattle; 1993.Google Scholar
  89. 89.
    Parravano M, et al. Bietti crystalline dystrophy: a morpho-functional evaluation. Doc Ophthalmol. 2012;124(1):73–7.PubMedGoogle Scholar
  90. 90.
    Liu DN, et al. The characterization of functional disturbances in Chinese patients with Bietti’s crystalline dystrophy at different fundus stages. Graefes Arch Clin Exp Ophthalmol. 2012;250(2):191–200.PubMedGoogle Scholar
  91. 91.
    Padhi TR, Kesarwani S, Jalali S. Bietti crystalline retinal dystrophy with subfoveal neurosensory detachment and congenital tortuosity of retinal vessels: case report. Doc Ophthalmol. 2011;122(3):199–206.PubMedGoogle Scholar
  92. 92.
    Sen P, Ray R, Ravi P. Electrophysiological findings in Bietti’s crystalline dystrophy. Clin Exp Optom. 2011;94(3):302–8.PubMedGoogle Scholar
  93. 93.
    Rossi S, et al. An atypical form of Bietti crystalline dystrophy. Ophthalmic Genet. 2011;32(2):118–21.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Mansour AM, Uwaydat SH, Chan CC. Long-term follow-up in Bietti crystalline dystrophy. Eur J Ophthalmol. 2007;17(4):680–2.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Gekka T, et al. CYP4V2 mutations in two Japanese patients with Bietti’s crystalline dystrophy. Ophthalmic Res. 2005;37(5):262–9.PubMedGoogle Scholar
  96. 96.
    Lockhart CM, et al. Longitudinal characterisation of function and structure of Bietti crystalline dystrophy: report on a novel homozygous mutation in CYP4V2. Br J Ophthalmol. 2018;102:187.PubMedGoogle Scholar
  97. 97.
    Tabatabaei A, et al. A case of Bietti crystalline dystrophy with preserved visual acuity and extinguished electroretinogram: a case report. Cases J. 2009;2:7100.PubMedPubMedCentralGoogle Scholar
  98. 98.
    Simunovic MP, Moore AT. The cone dystrophies. Eye (Lond). 1998;12 (Pt 3b):553–65.PubMedGoogle Scholar
  99. 99.
    Michaelides M, Hunt DM, Moore AT. The cone dysfunction syndromes. Br J Ophthalmol. 2004;88(2):291–7.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Michaelides M, et al. Progressive cone and cone-rod dystrophies: phenotypes and underlying molecular genetic basis. Surv Ophthalmol. 2006;51(3):232–58.PubMedGoogle Scholar
  101. 101.
    Aleman TS, et al. Spinocerebellar ataxia type 7 (SCA7) shows a cone-rod dystrophy phenotype. Exp Eye Res. 2002;74(6):737–45.PubMedGoogle Scholar
  102. 102.
    Birtel J, et al. Clinical and genetic characteristics of 251 consecutive patients with macular and cone/cone-rod dystrophy. Sci Rep. 2018;8(1):4824.PubMedPubMedCentralGoogle Scholar
  103. 103.
    Fishman GA, et al. ABCA4 gene sequence variations in patients with autosomal recessive cone-rod dystrophy. Arch Ophthalmol. 2003;121(6):851–5.PubMedGoogle Scholar
  104. 104.
    Birch DG, et al. Visual function in patients with cone-rod dystrophy (CRD) associated with mutations in the ABCA4(ABCR) gene. Exp Eye Res. 2001;73(6):877–86.PubMedGoogle Scholar
  105. 105.
    Demirci FY, et al. X-linked cone-rod dystrophy (locus COD1): identification of mutations in RPGR exon ORF15. Am J Hum Genet. 2002;70:1049–53.PubMedPubMedCentralGoogle Scholar
  106. 106.
    Robson AG, et al. Functional correlates of fundus autofluorescence abnormalities in patients with RPGR or RIMS1 mutations causing cone or cone rod dystrophy. Br J Ophthalmol. 2008;92(1):95–102.PubMedGoogle Scholar
  107. 107.
    Branham K, et al. Mutations in RPGR and RP2 account for 15% of males with simplex retinal degenerative disease. Invest Ophthalmol Vis Sci. 2012;53(13):8232–7.PubMedPubMedCentralGoogle Scholar
  108. 108.
    Sakuramoto H, et al. Two siblings with late-onset cone-rod dystrophy and no visible macular degeneration. Clin Ophthalmol. 2013;7:1703–11.PubMedPubMedCentralGoogle Scholar
  109. 109.
    Malm E, et al. Full-field electroretinography and marked variability in clinical phenotype of Alstrom syndrome. Arch Ophthalmol. 2008;126(1):51–7.PubMedGoogle Scholar
  110. 110.
    Marshall JD, et al. Alstrom syndrome. Eur J Hum Genet. 2007;15(12):1193–202.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Wajiha Jurdi Kheir
    • 1
  • Minzhong Yu
    • 2
    Email author
  • Alfonso Senatore
    • 1
  • Alessandro Racioppi
    • 1
    • 3
  • Roberto Gattegna
    • 1
    • 4
  • Donnell Creel
    • 5
  • Alessandro Iannaccone
    • 1
  1. 1.Center for Retinal Degenerations and Ophthalmic Genetic Diseases, Duke University School of Medicine, Duke Eye Center, Department of OphthalmologyDurhamUSA
  2. 2.Department of OphthalmologyUniversity Hospitals Eye InstituteClevelandUSA
  3. 3.University of North CarolinaChapel HillUSA
  4. 4.Retina Service, Israelitic HospitalRomeItaly
  5. 5.Moran Eye Center, University of Utah School of MedicineSalt Lake CityUSA

Personalised recommendations