Congenital Non-Degenerative Retinal Diseases

  • Wajiha Jurdi Kheir
  • Roberto Gattegna
  • Minzhong YuEmail author
  • Alessandro Racioppi
  • Alfonso Senatore
  • Donnell Creel
  • Alessandro Iannaccone


Electrophysiologic tests are used widely in the objective functional examinations in different retinal diseases for several reasons as follows: (1) Differentiation of those diseases with similar symptoms and results from other examinations. Electrophysiologic tests have different characteristics in different diseases. (2) For quantitatively monitoring of the treatment effect or the development of disease. (3) Electrophysiologic tests are more sensitive than other examinations in some diseases. (4) For those patients (e.g., pediatric patients, elderly patients, psychiatric patients, or the patients that intend to bias the results of examinations) who are uncooperative in performing some examinations (e.g., perimetry and visual acuity test). This chapter summarizes the application of electroretinogram and/or visual evoked potential in patients with congenital stationary night blindness, Oguchi disease, fundus albipunctatus, achromatopsia, blue cone monochromatism, and mutations of paired box 6 gene.


Electroretinogram Visual evoked potential Night blinding disorders Congenital stationary night blindness Oguchi disease Fundus albipunctatus Photophobia disorders Achromatopsia Blue cone monochromatism Paired box 6 gene 


  1. 1.
    Dryja TP, et al. Missense mutation in the gene encoding the alpha subunit of rod transducin in the Nougaret form of congenital stationary night blindness. Nat Genet. 1996;13(3):358–60.PubMedGoogle Scholar
  2. 2.
    Riazuddin SA, et al. A mutation in SLC24A1 implicated in autosomal-recessive congenital stationary night blindness. Am J Hum Genet. 2010;87(4):523–31.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Pusch CM, et al. The complete form of X-linked congenital stationary night blindness is caused by mutations in a gene encoding a leucine-rich repeat protein. Nat Genet. 2000;26(3):324–7.PubMedGoogle Scholar
  4. 4.
    Bech-Hansen NT, et al. Mutations in NYX, encoding the leucine-rich proteoglycan nyctalopin, cause X-linked complete congenital stationary night blindness. Nat Genet. 2000;26(3):319–23.PubMedGoogle Scholar
  5. 5.
    Zeitz C, et al. Mutations in GRM6 cause autosomal recessive congenital stationary night blindness with a distinctive scotopic 15-Hz flicker electroretinogram. Invest Ophthalmol Vis Sci. 2005;46(11):4328–35.PubMedGoogle Scholar
  6. 6.
    Dryja TP, et al. Night blindness and abnormal cone electroretinogram ON responses in patients with mutations in the GRM6 gene encoding mGluR6. Proc Natl Acad Sci U S A. 2005;102(13):4884–9.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Audo I, et al. TRPM1 is mutated in patients with autosomal-recessive complete congenital stationary night blindness. Am J Hum Genet. 2009;85(5):720–9.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Li Z, et al. Recessive mutations of the gene TRPM1 abrogate ON bipolar cell function and cause complete congenital stationary night blindness in humans. Am J Hum Genet. 2009;85(5):711–9.PubMedPubMedCentralGoogle Scholar
  9. 9.
    van Genderen MM, et al. Mutations in TRPM1 are a common cause of complete congenital stationary night blindness. Am J Hum Genet. 2009;85(5):730–6.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Audo I, et al. Whole-exome sequencing identifies mutations in GPR179 leading to autosomal-recessive complete congenital stationary night blindness. Am J Hum Genet. 2012;90(2):321–30.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Peachey NS, et al. GPR179 is required for depolarizing bipolar cell function and is mutated in autosomal-recessive complete congenital stationary night blindness. Am J Hum Genet. 2012;90(2):331–9.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Vincent A, et al. Biallelic mutations in GNB3 cause a unique form of autosomal-recessive congenital stationary night blindness. Am J Hum Genet. 2016;98(5):1011–9.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Zeitz C, et al. Whole-exome sequencing identifies LRIT3 mutations as a cause of autosomal-recessive complete congenital stationary night blindness. Am J Hum Genet. 2013;92(1):67–75.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Glass IA, et al. Genetic mapping of a cone and rod dysfunction (Aland Island eye disease) to the proximal short arm of the human X chromosome. J Med Genet. 1993;30(12):1044–50.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Bech-Hansen NT, et al. Loss-of-function mutations in a calcium-channel alpha1-subunit gene in Xp11.23 cause incomplete X-linked congenital stationary night blindness. Nat Genet. 1998;19(3):264–7.PubMedGoogle Scholar
  16. 16.
    Strom TM, et al. An L-type calcium-channel gene mutated in incomplete X-linked congenital stationary night blindness. Nat Genet. 1998;19(3):260–3.PubMedGoogle Scholar
  17. 17.
    Zeitz C, et al. Mutations in CABP4, the gene encoding the Ca2+-binding protein 4, cause autosomal recessive night blindness. Am J Hum Genet. 2006;79(4):657–67.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Littink KW, et al. A novel homozygous nonsense mutation in CABP4 causes congenital cone-rod synaptic disorder. Invest Ophthalmol Vis Sci. 2009;50(5):2344–50.PubMedGoogle Scholar
  19. 19.
    Bijveld MM, et al. Genotype and phenotype of 101 dutch patients with congenital stationary night blindness. Ophthalmology. 2013;120(10):2072–81.PubMedGoogle Scholar
  20. 20.
    Kurata K, Hosono K, Hotta Y. Long-term clinical course in a patient with complete congenital stationary night blindness. Case Rep Ophthalmol. 2017;8(1):237–44.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Miyake Y, et al. Congenital stationary night blindness with negative electroretinogram. A new classification. Arch Ophthalmol. 1986;104(7):1013–20.PubMedGoogle Scholar
  22. 22.
    Hayashi T, et al. A novel homozygous GRK1 mutation (P391H) in 2 siblings with Oguchi disease with markedly reduced cone responses. Ophthalmology. 2007;114(1):134–41.PubMedGoogle Scholar
  23. 23.
    Yamamoto S, et al. Defects in the rhodopsin kinase gene in the Oguchi form of stationary night blindness. Nat Genet. 1997;15(2):175–8.PubMedGoogle Scholar
  24. 24.
    Mucciolo DP, et al. A novel GRK1 mutation in an Italian patient with Oguchi disease. Ophthalmic Genet. 2018;39(1):137–8.PubMedGoogle Scholar
  25. 25.
    Fuchs S, et al. A homozygous 1-base pair deletion in the arrestin gene is a frequent cause of Oguchi disease in Japanese. Nat Genet. 1995;10(3):360–2.PubMedGoogle Scholar
  26. 26.
    Maw M, et al. Two Indian siblings with Oguchi disease are homozygous for an arrestin mutation encoding premature termination. Hum Mutat. 1998;11(Suppl 1):S317–9.Google Scholar
  27. 27.
    Maw MA, et al. Oguchi disease: suggestion of linkage to markers on chromosome 2q. J Med Genet. 1995;32(5):396–8.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Nakazawa M, et al. Oguchi disease: phenotypic characteristics of patients with the frequent 1147delA mutation in the arrestin gene. Retina. 1997;17(1):17–22.PubMedGoogle Scholar
  29. 29.
    Cideciyan AV, et al. Null mutation in the rhodopsin kinase gene slows recovery kinetics of rod and cone phototransduction in man. Proc Natl Acad Sci U S A. 1998;95(1):328–33.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Huang L, et al. A Chinese family with Oguchi’s disease due to compound heterozygosity including a novel deletion in the arrestin gene. Mol Vis. 2012;18:528–36.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Sergouniotis PI, et al. Mizuo-Nakamura phenomenon in Oguchi disease due to a homozygous nonsense mutation in the SAG gene. Eye (Lond). 2011;25(8):1098–101.Google Scholar
  32. 32.
    Yuan A, Nusinowitz S, Sarraf D. Mizuo--Nakamura phenomenon with a negative waveform ERG. Br J Ophthalmol. 2011;95(1):147–8. 156PubMedGoogle Scholar
  33. 33.
    Miyake Y, et al. Electrophysiological findings in patients with Oguchi’s disease. Jpn J Ophthalmol. 1996;40(4):511–9.PubMedGoogle Scholar
  34. 34.
    Fujinami K, et al. Oguchi disease with unusual findings associated with a heterozygous mutation in the SAG gene. Arch Ophthalmol. 2011;129(10):1375–6.PubMedGoogle Scholar
  35. 35.
    Hayashi T, et al. Macular dysfunction in Oguchi disease with the frequent mutation 1147delA in the SAG gene. Ophthalmic Res. 2011;46(4):175–80.PubMedGoogle Scholar
  36. 36.
    Schatz P, et al. Fundus albipunctatus associated with compound heterozygous mutations in RPE65. Ophthalmology. 2011;118(5):888–94.PubMedGoogle Scholar
  37. 37.
    Liu X, et al. RDH5 retinopathy (fundus albipunctatus) with preserved rod function. Retina. 2015;35(3):582–9.PubMedGoogle Scholar
  38. 38.
    Yamamoto H, et al. Mutations in the gene encoding 11-cis retinol dehydrogenase cause delayed dark adaptation and fundus albipunctatus. Nat Genet. 1999;22(2):188–91.PubMedGoogle Scholar
  39. 39.
    Margolis S, Siegel IM, Ripps H. Variable expressivity in fundus albipunctatus. Ophthalmology. 1987;94(11):1416–22.PubMedGoogle Scholar
  40. 40.
    Iannaccone A, et al. Fundus albipunctatus in a 6-year old girl due to compound heterozygous mutations in the RDH5 gene. Doc Ophthalmol. 2007;115(2):111–6.PubMedGoogle Scholar
  41. 41.
    Hajali M, et al. Diagnosis in a patient with fundus albipunctatus and atypical fundus changes. Doc Ophthalmol. 2009;118(3):233–8.PubMedGoogle Scholar
  42. 42.
    Ruther K, et al. Clinical and genetic findings in a patient with fundus albipunctatus. Ophthalmologe. 2004;101(2):177–85.PubMedGoogle Scholar
  43. 43.
    Hotta K, et al. Macular dystrophy in a Japanese family with fundus albipunctatus. Am J Ophthalmol. 2003;135(6):917–9.PubMedGoogle Scholar
  44. 44.
    Nakamura M, Miyake Y. Macular dystrophy in a 9-year-old boy with fundus albipunctatus. Am J Ophthalmol. 2002;133(2):278–80.PubMedGoogle Scholar
  45. 45.
    Miyazaki K, et al. [A case of fundus albipunctatus with a retinol dehydrogenase 5 gene mutation in a child]. Nippon Ganka Gakkai Zasshi. 2001;105(8):530–4.Google Scholar
  46. 46.
    Naz S, et al. Mutations in RLBP1 associated with fundus albipunctatus in consanguineous Pakistani families. Br J Ophthalmol. 2011;95(7):1019–24.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Dryja TP. Molecular genetics of Oguchi disease, fundus albipunctatus, and other forms of stationary night blindness: LVII Edward Jackson Memorial Lecture. Am J Ophthalmol. 2000;130(5):547–63.PubMedGoogle Scholar
  48. 48.
    Skorczyk-Werner A, et al. Fundus albipunctatus: review of the literature and report of a novel RDH5 gene mutation affecting the invariant tyrosine (p.Tyr175Phe). J Appl Genet. 2015;56(3):317–27.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Wang NK, et al. Multimodal fundus imaging in fundus albipunctatus with RDH5 mutation: a newly identified compound heterozygous mutation and review of the literature. Doc Ophthalmol. 2012;125(1):51–62.PubMedGoogle Scholar
  50. 50.
    Pras E, et al. Fundus albipunctatus: novel mutations and phenotypic description of Israeli patients. Mol Vis. 2012;18:1712–8.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Sergouniotis PI, et al. Phenotypic variability in RDH5 retinopathy (Fundus Albipunctatus). Ophthalmology. 2011;118(8):1661–70.PubMedGoogle Scholar
  52. 52.
    Niwa Y, et al. Cone and rod dysfunction in fundus albipunctatus with RDH5 mutation: an electrophysiological study. Invest Ophthalmol Vis Sci. 2005;46(4):1480–5.PubMedGoogle Scholar
  53. 53.
    Pascual-Camps I, et al. Diagnosis and treatment options for achromatopsia: a review of the literature. J Pediatr Ophthalmol Strabismus. 2018;55(2):85–92.PubMedGoogle Scholar
  54. 54.
    Zobor D, Zobor G, Kohl S. Achromatopsia: on the doorstep of a possible therapy. Ophthalmic Res. 2015;54(2):103–8.PubMedGoogle Scholar
  55. 55.
    Luo X, et al. Blue cone monochromacy: visual function and efficacy outcome measures for clinical trials. PLoS One. 2015;10(4):e0125700.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Gardner JC, et al. Blue cone monochromacy: causative mutations and associated phenotypes. Mol Vis. 2009;15:876–84.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Sumaroka A, et al. Blue cone monochromacy caused by the C203R missense mutation or large deletion mutations. Invest Ophthalmol Vis Sci. 2018;59(15):5762–72.PubMedGoogle Scholar
  58. 58.
    Gardner JC, et al. Three different cone opsin gene array mutational mechanisms with genotype-phenotype correlation and functional investigation of cone opsin variants. Hum Mutat. 2014;35(11):1354–62.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Orosz O, et al. Myopia and late-onset progressive cone dystrophy associate to LVAVA/MVAVA exon 3 interchange haplotypes of opsin genes on chromosome X. Invest Ophthalmol Vis Sci. 2017;58(3):1834–42.PubMedGoogle Scholar
  60. 60.
    Skalak C, et al. A simple, clinician-friendly perimetric approach to the differential diagnosis between blue cone monochromacy (BCM) and achromatopsia (ACHM): a pilot study. Invest Ophthalmol Vis Sci. 2018;59(9):4045.Google Scholar
  61. 61.
    Walther C, Gruss P. Pax-6, a murine paired box gene, is expressed in the developing CNS. Development. 1991;113(4):1435–49.PubMedGoogle Scholar
  62. 62.
    Hingorani M, Hanson I, van Heyningen V. Aniridia. Eur J Hum Genet. 2012;20(10):1011–7.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Guo H, et al. A large novel deletion downstream of PAX6 gene in a Chinese family with ocular coloboma. PLoS One. 2013;8(12):e83073.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Jia X, et al. A novel mutation of PAX6 in Chinese patients with new clinical features of Peters’ anomaly. Mol Vis. 2010;16:676–81.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Hood MP, et al. Abnormal cone ERGs in a family with congenital nystagmus and photophobia harboring a p.X423Lfs mutation in the PAX6 gene. Doc Ophthalmol. 2015;130(2):157–64.PubMedGoogle Scholar
  66. 66.
    Yokoi T, et al. Genotype-phenotype correlation of PAX6 gene mutations in aniridia. Hum Genome Var. 2016;3:15052.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Tremblay F, et al. Effects of PAX6 mutations on retinal function: an electroretinographic study. Am J Ophthalmol. 1998;126(2):211–8.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Wajiha Jurdi Kheir
    • 1
  • Roberto Gattegna
    • 1
    • 2
  • Minzhong Yu
    • 3
    Email author
  • Alessandro Racioppi
    • 1
    • 4
  • Alfonso Senatore
    • 1
  • Donnell Creel
    • 5
  • Alessandro Iannaccone
    • 1
  1. 1.Center for Retinal Degenerations and Ophthalmic Genetic Diseases, Duke University School of MedicineDuke Eye Center, Department of OphthalmologyDurhamUSA
  2. 2.Retina Service, Israelitic HospitalRomeItaly
  3. 3.Department of OphthalmologyUniversity Hospitals Eye InstituteClevelandUSA
  4. 4.University of North CarolinaChapel HillUSA
  5. 5.Moran Eye CenterUniversity of Utah School of MedicineSalt Lake CityUSA

Personalised recommendations