Advertisement

Characteristics of Visual Electrophysiology in the Diseases of Optic Nerve or Visual Pathway

  • Minzhong YuEmail author
  • Donnell Creel
Chapter
  • 99 Downloads

Abstract

This chapter summarizes the application of electrophysiologic tests in diseases associated with optic nerve or higher visual pathway dysfunction. Electrophysiologic test results are shown in amblyopia, Leber’s hereditary optic neuropathy, multiple sclerosis, ischemic optic neuropathy, optic neuritis, optic nerve hypoplasia, traumatic optic neuropathy, neurofibromatosis, and optic nerve toxicities that can provide clinicians information for differential diagnoses. In addition, this chapter will help clinicians choose suitable electrophysiologic tests in specific patients.

Keywords

Visual evoked potential Electroretinogram Electrooculogram Multiple sclerosis Ischemic optic neuropathy Optic neuritis Optic nerve hypoplasia Traumatic optic neuropathy Neurofibromatosis Optic nerve toxicities Leber’s hereditary optic neuropathy Amblyopia 

References

  1. 1.
    Alshuaib WB. Progression of visual evoked potential abnormalities in multiple sclerosis and optic neuritis. Electromyogr Clin Neurophysiol. 2000;40(4):243–52.PubMedGoogle Scholar
  2. 2.
    Hamurcu M, et al. Analysis of multiple sclerosis patients with electrophysiological and structural tests. Int Ophthalmol. 2017;37(3):649–53.PubMedGoogle Scholar
  3. 3.
    Hayreh SS. Posterior ischaemic optic neuropathy: clinical features, pathogenesis, and management. Eye (Lond). 2004;18(11):1188–206.Google Scholar
  4. 4.
    Hayreh SS. Blood supply of the optic nerve head and its role in optic atrophy, glaucoma, and oedema of the optic disc. Br J Ophthalmol. 1969;53(11):721–48.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Isayama Y, et al. Posterior ischemic optic neuropathy. I. Blood supply of the optic nerve. Ophthalmologica. 1983;186(4):197–203.PubMedGoogle Scholar
  6. 6.
    Nuttall GA, et al. Risk factors for ischemic optic neuropathy after cardiopulmonary bypass: a matched case/control study. Anesth Analg. 2001;93(6):1410–6.Google Scholar
  7. 7.
    Ho VT, et al. Ischemic optic neuropathy following spine surgery. J Neurosurg Anesthesiol. 2005;17(1):38–44.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Buono LM, Foroozan R. Perioperative posterior ischemic optic neuropathy: review of the literature. Surv Ophthalmol. 2005;50(1):15–26.PubMedGoogle Scholar
  9. 9.
    Lee LA, et al. The American Society of Anesthesiologists Postoperative Visual Loss Registry: analysis of 93 spine surgery cases with postoperative visual loss. Anesthesiology. 2006;105(4):652–9; quiz 867–8.PubMedGoogle Scholar
  10. 10.
    Tormene AP, et al. Electrophysiological findings in anterior ischemic optic neuropathy. Metab Pediatr Syst Ophthalmol (1985). 1989;12(1–3):76–9.Google Scholar
  11. 11.
    Holder GE. Electrophysiological assessment of optic nerve disease. Eye (Lond). 2004;18(11):1133–43.Google Scholar
  12. 12.
    Buono LM, et al. Posterior ischemic optic neuropathy after hemodialysis. Ophthalmology. 2003;110(6):1216–8.PubMedGoogle Scholar
  13. 13.
    Murphy MA. Bilateral posterior ischemic optic neuropathy after lumbar spine surgery. Ophthalmology. 2003;110(7):1454–7.PubMedGoogle Scholar
  14. 14.
    Jayaraman M, et al. Multifocal visual evoked potential in optic neuritis, ischemic optic neuropathy and compressive optic neuropathy. Indian J Ophthalmol. 2014;62(3):299–304.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Fraser CL, Holder GE. Electroretinogram findings in unilateral optic neuritis. Doc Ophthalmol. 2011;123(3):173–8.PubMedGoogle Scholar
  16. 16.
    McCulloch DL, et al. Retinal function in infants with optic nerve hypoplasia: electroretinograms to large patterns and photopic flash. Eye (Lond). 2007;21(6):712–20.Google Scholar
  17. 17.
    McCulloch DL, et al. Clinical electrophysiology and visual outcome in optic nerve hypoplasia. Br J Ophthalmol. 2010;94(8):1017–23.PubMedGoogle Scholar
  18. 18.
    Cibis GW, Fitzgerald KM. Optic nerve hypoplasia in association with brain anomalies and an abnormal electroretinogram. Doc Ophthalmol. 1994;86(1):11–22.PubMedGoogle Scholar
  19. 19.
    Ikejiri M, et al. Pattern visual evoked potentials in traumatic optic neuropathy. Ophthalmologica. 2002;216(6):415–9.PubMedGoogle Scholar
  20. 20.
    Jabbari B, et al. The value of visual evoked potential as a screening test in neurofibromatosis. Arch Neurol. 1985;42(11):1072–4.PubMedGoogle Scholar
  21. 21.
    Iannaccone A, et al. Visual evoked potentials in children with neurofibromatosis type 1. Doc Ophthalmol. 2002;105(1):63–81.PubMedGoogle Scholar
  22. 22.
    North K, et al. Optic gliomas in neurofibromatosis type 1: role of visual evoked potentials. Pediatr Neurol. 1994;10(2):117–23.PubMedGoogle Scholar
  23. 23.
    Lubinski W, et al. Supernormal electro-oculograms in patients with neurofibromatosis type 1. Hered Cancer Clin Pract. 2004;2(4):193–6.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Lubinski W, et al. Electro-oculogram in patients with neurofibromatosis type 1. Doc Ophthalmol. 2001;103(2):91–103.PubMedGoogle Scholar
  25. 25.
    Kim KL, Park SP. Visual function test for early detection of ethambutol induced ocular toxicity at the subclinical level. Cutan Ocul Toxicol. 2016;35(3):228–32.PubMedGoogle Scholar
  26. 26.
    Yiannikas C, Walsh JC, McLeod JG. Visual evoked potentials in the detection of subclinical optic toxic effects secondary to ethambutol. Arch Neurol. 1983;40(10):645–8.PubMedGoogle Scholar
  27. 27.
    Goyal JL, et al. Evaluation of visual functions in patients on ethambutol therapy for tuberculosis: a prospective study. J Commun Dis. 2003;35(4):230–43.PubMedGoogle Scholar
  28. 28.
    Chen YJ, Kang WM. Effects of bilirubin on visual evoked potentials in term infants. Eur J Pediatr. 1995;154(8):662–6.PubMedGoogle Scholar
  29. 29.
    Mihalcea O, Arnold AC. Side effect of head and neck radiotherapy: optic neuropathy. Oftalmologia. 2008;52(1):36–40.PubMedGoogle Scholar
  30. 30.
    Danesh-Meyer HV. Radiation-induced optic neuropathy. J Clin Neurosci. 2008;15(2):95–100.PubMedGoogle Scholar
  31. 31.
    Hu WH, et al. Impairment of optic path due to radiotherapy for nasopharyngeal carcinoma. Doc Ophthalmol. 2003;107(2):101–10.PubMedGoogle Scholar
  32. 32.
    Wallace DC, et al. Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science. 1988;242(4884):1427–30.PubMedGoogle Scholar
  33. 33.
    Vergani L, et al. MtDNA mutations associated with Leber’s hereditary optic neuropathy: studies on cytoplasmic hybrid (cybrid) cells. Biochem Biophys Res Commun. 1995;210(3):880–8.PubMedGoogle Scholar
  34. 34.
    Soldath P, et al. Leber hereditary optic neuropathy due to a new ND1 mutation. Ophthalmic Genet. 38(5):480–5.PubMedGoogle Scholar
  35. 35.
    Saikia BB, et al. Whole mitochondrial genome analysis in South Indian patients with Leber’s hereditary optic neuropathy. Mitochondrion. 2017;36:21–8.PubMedGoogle Scholar
  36. 36.
    Dorfman LJ, et al. Visual evoked potentials in Leber’s hereditary optic neuropathy. Ann Neurol. 1977;1(6):565–8.PubMedGoogle Scholar
  37. 37.
    Salomao SR, et al. Visual electrophysiologic findings in patients from an extensive Brazilian family with Leber’s hereditary optic neuropathy. Doc Ophthalmol. 2004;108(2):147–55.PubMedGoogle Scholar
  38. 38.
    Arden GB, Barnard WM, Mushin AS. Visually evoked responses in amblyopia. Br J Ophthalmol. 1974;58(3):183–92.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Wanger P, Persson HE. Visual evoked responses to pattern-reversal stimulation in childhood amblyopia. Acta Ophthalmol. 1980;58(5):697–706.Google Scholar
  40. 40.
    Davis ET, Bass SJ, Sherman J. Flash visual evoked potential (VEP) in amblyopia and optic nerve disease. Optom Vis Sci. 1995;72(9):612–8.PubMedGoogle Scholar
  41. 41.
    Yu M, Brown B, Edwards MH. Investigation of multifocal visual evoked potential in anisometropic and esotropic amblyopes. Invest Ophthalmol Vis Sci. 1998;39(11):2033–40.Google Scholar
  42. 42.
    Sengpiel F, Blakemore C. The neural basis of suppression and amblyopia in strabismus. Eye (Lond). 1996;10(Pt 2):250–8.Google Scholar
  43. 43.
    Sireteanu R, Fronius M. Naso-temporal asymmetries in human amblyopia consequence of long-term interocular suppression. Vision Res. 1981;21(7):1055–63.PubMedGoogle Scholar
  44. 44.
    Moschos MM, et al. Multifocal visual evoked potentials in amblyopia due to anisometropia. Clin Ophthalmol. 2010;4:849–53.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Perez-Rico C, et al. Evaluation of visual function and retinal structure in adult amblyopes. Optom Vis Sci. 2015;92(3):375–83.PubMedGoogle Scholar
  46. 46.
    Arden GB, Wooding SL. Pattern ERG in amblyopia. Invest Ophthalmol Vis Sci. 1985;26(1):88–96.PubMedGoogle Scholar
  47. 47.
    Ikeda H, Tremain KE. Amblyopia occurs in retinal ganglion cells in cats reared with convergent squint without alternating fixation. Exp Brain Res. 1979;35(3):559–82.PubMedGoogle Scholar
  48. 48.
    Wanger P, Persson HE. Oscillatory potentials, flash and pattern-reversal electroretinograms in amblyopia. Acta Ophthalmol. 1984;62(4):643–50.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of OphthalmologyUniversity Hospitals Eye InstituteClevelandUSA
  2. 2.Moran Eye CenterUniversity of Utah School of MedicineSalt Lake CityUSA

Personalised recommendations