Advertisement

A Diffusion Model for Stimulus Propagation in Remodeling Bone Tissues

  • Ivan GiorgioEmail author
  • Ugo Andreaus
  • Faris Alzahrani
  • Tasawar Hayat
  • Tomasz Lekszycki
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 120)

Abstract

The mechanically driven biological stimulus in bone tissues regulates and controls the action of special cells called osteoblasts and osteoclasts. Different models have been proposed to describe the important and not yet completely understood phenomena related to this ‘feedback’ process. In Lekszycki and dell’Isola (2012) an integro-differential system of equations has been studied to describe the remodeling process in reconstructed bones where the biological stimulus in a given instant t depends on the deformation state of the tissue at the same instant. Instead biological knowledge suggests that the biological stimulus, once produced, is ‘diffused’ in bone tissue to reach the target cells. In this paper, we propose a model for de-scribing biological stimulus diffusion in remodeling tissues in which diffusive time dependent phenomena are taken into account. Some preliminary numerical simulations are presented which suggest that this model is promising and deserves further investigations.

Keywords

Mechanical–biological coupling Bone functional adaptation Growth and resorption processes Bone remodeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abali BE, Völlmecke C, Woodward B, Kashtalyan M, Guz I, Müller WH (2012) Numerical modeling of functionally graded materials using a variational formulation. Continuum Mechanics and Thermodynamics 24(4-6):377–390Google Scholar
  2. Abeyaratne R, Knowles JK (2006) Evolution of Phase Transitions. A Continuum Theory. Cambridge University Press, CambridgeGoogle Scholar
  3. Agerbaek MO, Eriksen EF, Kragstrup J, Mosekilde L, Melsen F (1991) A reconstruction of the remodelling cycle in normal human cortical iliac bone. Bone and mineral 12(2):101–112Google Scholar
  4. Allena R, Cluzel C (2018) Heterogeneous directions of orthotropy in three-dimensional structures: finite element description based on diffusion equations. Mathematics and Mechanics of Complex Systems 6(4):339–351Google Scholar
  5. Altenbach H, Eremeyev V (2009) Eigen-vibrations of plates made of functionally graded material. Computers, Materials, & Continua 9(2):153–178Google Scholar
  6. Altenbach H, Eremeyev V (2015) On the constitutive equations of viscoelastic micropolar plates and shells of differential type. Mathematics and Mechanics of Complex Systems 3(3):273–283Google Scholar
  7. Altenbach H, Eremeyev VA (2014) Vibration analysis of non-linear 6-parameter prestressed shells. Meccanica 49(8):1751–1761Google Scholar
  8. Altenbach H, Eremeyev VA, Naumenko K (2015) On the use of the first order shear deformation plate theory for the analysis of three-layer plates with thin soft core layer. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 95(10):1004–1011Google Scholar
  9. Amar MB, Goriely A (2005) Growth and instability in elastic tissues. Journal of the Mechanics and Physics of Solids 53(10):2284–2319Google Scholar
  10. Ambrosi D, Guillou A (2007) Growth and dissipation in biological tissues. Continuum Mechanics and Thermodynamics 19(5):245–251Google Scholar
  11. Ambrosi D, Preziosi L, Vitale G (2010) The insight of mixtures theory for growth and remodeling. Zeitschrift für angewandte Mathematik und Physik 61(1):177–191Google Scholar
  12. Andreaus U, Giorgio I, Lekszycki T (2014) A 2-D continuum model of a mixture of bone tissue and bio-resorbable material for simulating mass density redistribution under load slowly variable in time. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 94(12):978–1000Google Scholar
  13. Ashby MF, Evans AG, Fleck NA, Gibson LJ, Hutchinson JW, Wadley HNG (2000) Metal Foams: a Design Guid. Butterworth-Heinemann, BostonGoogle Scholar
  14. Ateshian GA (2007) On the theory of reactive mixtures for modeling biological growth. Biomechanics and Modeling in Mechanobiology 6(6):423–445Google Scholar
  15. Balobanov V, Khakalo S, Niiranen J (2016) Isogeometric analysis of gradient-elastic 1D and 2D problems. In: Altenbach H, Forest S (eds) Generalized Continua as Models for Classical and Advanced Materials, Advanced Structured Materials, vol 42, Springer, ChamGoogle Scholar
  16. Beaupre GS, Orr TE, Carter DR (1990a) An approach for time-dependent bone modeling and remodeling—application: A preliminary remodeling simulation. Journal of Orthopaedic Research 8(5):662–670Google Scholar
  17. Beaupre GS, Orr TE, Carter DR (1990b) An approach for time-dependent bone modeling and remodeling—theoretical development. Journal of Orthopaedic Research 8(5):651–661Google Scholar
  18. Bednarczyk E, Lekszycki T (2016) A novel mathematical model for growth of capillaries and nutrient supply with application to prediction of osteophyte onset. Zeitschrift für angewandte Mathematik und Physik 67(4):94Google Scholar
  19. Berezovski A, Engelbrecht J, Maugin GA (2008) Numerical Simulation of Waves and Fronts in Inhomogeneous Solids. World Scientific, New Jersey et al.Google Scholar
  20. Berezovski A, Yildizdag ME, Scerrato D (2018) On the wave dispersion in microstructured solids. Continuum Mechanics and Thermodynamics pp 1–20,  https://doi.org/10.1007/s00161-018-0683-1
  21. Bonewald LF, Johnson ML (2008) Osteocytes, mechanosensing and Wnt signaling. Bone 42(4):606–615Google Scholar
  22. Bonucci E (2009) The osteocyte: the underestimated conductor of the bone orchestra. Rendiconti Lincei 20(3):237–254Google Scholar
  23. Camar-Eddine M, Seppecher P (2001) Non-local interactions resulting from the homogenization of a linear diffusive medium. Comptes Rendus de l’Academie des Sciences Series I Mathematics 332(5):485–490Google Scholar
  24. Carlen EA, Carvalho MC, Esposito R, Lebowitz JL, Marra R (2009) Droplet minimizers for the Gates–Lebowitz–Penrose free energy functional. Nonlinearity 22(12):2919Google Scholar
  25. Carpentier VT, Wong J, Yeap Y, Gan C, Sutton-Smith P, Badiei A, Fazzalari NL, Kuliwaba JS (2012) Increased proportion of hypermineralized osteocyte lacunae in osteoporotic and osteoarthritic human trabecular bone: Implications for bone remodeling. Bone 50(3):688–694Google Scholar
  26. Cazzani A, Malagù M, Turco E (2016a) Isogeometric analysis of plane-curved beams. Mathematics and Mechanics of Solids 21(5):562–577Google Scholar
  27. Cazzani A, Malagù M, Turco E, Stochino F (2016b) Constitutive models for strongly curved beams in the frame of isogeometric analysis. Mathematics and Mechanics of Solids 21(2):182–209Google Scholar
  28. Chatzigeorgiou G, Javili A, Steinmann P (2014) Unified magnetomechanical homogenization framework with application to magnetorheological elastomers. Mathematics and Mechanics of Solids 19(2):193–211Google Scholar
  29. Chen AE, Ginty DD, Fan CM (2005) Protein kinase A signalling via CREB controls myogenesis induced by Wnt proteins. Nature 433(7023):317Google Scholar
  30. Cluzel C, Allena R (2018) A general method for the determination of the local orthotropic directions of heterogeneous materials: application to bone structures using μCT images. Mathematics and Mechanics of Complex Systems 6(4):353–367Google Scholar
  31. Colangeli M, De Masi A, Presutti E (2016) Latent heat and the Fourier law. Physics Letters A 380(20):1710–1713Google Scholar
  32. Colangeli M, De Masi A, Presutti E (2017) Microscopic models for uphill diffusion. Journal of Physics A: Mathematical and Theoretical 50(43):435,002Google Scholar
  33. Contrafatto L, Cuomo M (2006) A framework of elastic–plastic damaging model for concrete under multiaxial stress states. International Journal of Plasticity 22(12):2272–2300Google Scholar
  34. Cowin SC (1999) Bone poroelasticity. Journal of Biomechanics 32(3):217–238Google Scholar
  35. Cowin SC (ed) (2001) Bone Mechanics Handbook, 2nd edn. CRC Press, Boca RatonGoogle Scholar
  36. Cuomo M, Contrafatto L, Greco L (2014) A variational model based on isogeometric interpolation for the analysis of cracked bodies. International Journal of Engineering Science 80:173–188Google Scholar
  37. Dallas SL, Bonewald LF (2010) Dynamics of the transition from osteoblast to osteocyte. Annals of the New York Academy of Sciences 1192(1):437–443Google Scholar
  38. De Masi A, Ferrari PA, Lebowitz JL (1986) Reaction-diffusion equations for interacting particle systems. Journal of Statistical Physics 44(3-4):589–644Google Scholar
  39. De Masi A, Gobron T, Presutti E (1995) Travelling fronts in non-local evolution equations. Archive for Rational Mechanics and Analysis 132(2):143–205Google Scholar
  40. dell’Isola F, Seppecher P, Madeo A (2012) How contact interactions may depend on the shape of Cauchy cuts in Nth gradient continua: approach “à la D’Alembert”. Zeitschrift für angewandte Mathematik und Physik 63(6):1119–1141Google Scholar
  41. Di Carlo A, Quiligotti S (2002) Growth and balance. Mechanics Research Communications 29(6):449–456Google Scholar
  42. Diebels S, Steeb H (2003) Stress and couple stress in foams. Computational Materials Science 28(3–4):714–722Google Scholar
  43. Engelbrecht J, Berezovski A (2015) Reflections on mathematical models of deformation waves in elastic microstructured solids. Mathematics and Mechanics of Complex Systems 3(1):43–82Google Scholar
  44. Epstein M, Maugin GA (2000) Thermomechanics of volumetric growth in uniform bodies. International Journal of Plasticity 16(7):951–978Google Scholar
  45. Eremeyev VA, PietraszkiewiczW(2009) Phase transitions in thermoelastic and thermoviscoelastic shells. Archives of Mechanics 61(1):41–67Google Scholar
  46. Eremeyev VA, Pietraszkiewicz W (2011) Thermomechanics of shells undergoing phase transition. Journal of Mechanics and Physics of Solids 59(7):1395–1412Google Scholar
  47. Eremeyev VA, Pietraszkiewicz W (2016) Material symmetry group and constitutive equations of micropolar anisotropic elastic solids. Mathematics and Mechanics of Solids 21(2):210–221Google Scholar
  48. Eremeyev VA, Lebedev LP, Altenbach H (2013) Foundations of Micropolar Mechanics. Springer, BerlinGoogle Scholar
  49. Eremeyev VA, Lebedev LP, Cloud MJ (2015) The Rayleigh and Courant variational principles in the six-parameter shell theory. Mathematics and Mechanics of Solids 20(7):806–822Google Scholar
  50. Eriksen EF (2010) Cellular mechanisms of bone remodeling. Reviews in Endocrine and Metabolic Disorders 11(4):219–227Google Scholar
  51. Franciosi P, Spagnuolo M, Salman OU (2019) Mean Green operators of deformable fiber networks embedded in a compliant matrix and property estimates. Continuum Mechanics and Thermodynamics 31(1):101–132Google Scholar
  52. Frost HM (1987) Bone “mass” and the “mechanostat”: a proposal. The Anatomical Record 219(1):1–9Google Scholar
  53. Fung YC (2006) Biomechanics. Mechanical Properties of Living Tissues, 2nd edn. Springer, New YorkGoogle Scholar
  54. Ganghoffer JF (2012) A contribution to the mechanics and thermodynamics of surface growth. application to bone external remodeling. International Journal of Engineering Science 50(1):166– 91Google Scholar
  55. Garikipati K, Olberding JE, Narayanan H, Arruda EM, Grosh K, Calve S (2006) Biological remodelling: stationary energy, configurational change, internal variables and dissipation. Journal of the Mechanics and Physics of Solids 54(7):1493–1515Google Scholar
  56. George D, Allena R, Remond Y (2017) Mechanobiological stimuli for bone remodeling: mechanical energy, cell nutriments and mobility. Computer Methods in Biomechanics and Biomedical Engineering 20(S1):91–92Google Scholar
  57. George D, Allena R, Remond Y (2018) A multiphysics stimulus for continuum mechanics bone remodeling. Mathematics and Mechanics of Complex Systems 6(4):307–319Google Scholar
  58. Gibson LJ, Ashby MF (1997) Cellular Solids: Structure and Properties, 2nd edn. Cambridge Solid State Science Series, Cambridge University Press, CambridgeGoogle Scholar
  59. Giorgio I, Andreaus U, Scerrato D, dell’Isola F (2016) A visco-poroelastic model of functional adaptation in bones reconstructed with bio-resorbable materials. Biomechanics and Modeling in Mechanobiology 15(5):1325–1343Google Scholar
  60. Giorgio I, Andreaus U, dell’Isola F, Lekszycki T (2017a) Viscous second gradient porous materials for bones reconstructed with bio-resorbable grafts. Extreme Mechanics Letters 13:141–147Google Scholar
  61. Giorgio I, Andreaus U, Lekszycki T, Della Corte A (2017b) The influence of different geometries of matrix/scaffold on the remodeling process of a bone and bioresorbable material mixture with voids. Mathematics and Mechanics of Solids 22(5):969–987Google Scholar
  62. Giorgio I, Andreaus U, Scerrato D, Braidotti P (2017c) Modeling of a non-local stimulus for bone remodeling process under cyclic load: Application to a dental implant using a bioresorbable porous material. Mathematics and Mechanics of Solids 22(9):1790–1805Google Scholar
  63. Goda I, Assidi M, Ganghoffer JF (2014) A 3D elastic micropolar model of vertebral trabecular bone from lattice homogenization of the bone microstructure. Biomechanics and Modeling in Mechanobiology 13(1):53–83Google Scholar
  64. Gong Y, Slee RB, Fukai N, et al (2001) LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 107(4):513–523Google Scholar
  65. Goriely A, Robertson-Tessi M, Tabor M, Vandiver R (2008) Elastic growth models. In: Mondaini RP, Pardalos PM (eds) Mathematical Modelling of Biosystems, Applied Optimization, vol 102, Springer, pp 1–44Google Scholar
  66. Hambli R (2014) Connecting mechanics and bone cell activities in the bone remodeling process: an integrated finite element modeling. Frontiers in Bioengineering and Biotechnology 2(6):1–12Google Scholar
  67. Himeno-Ando A, Izumi Y, Yamaguchi A, Iimura T (2012) Structural differences in the osteocyte network between the calvaria and long bone revealed by three-dimensional fluorescence morphometry, possibly reflecting distinct mechano-adaptations and sensitivities. Biochemical and Biophysical Research Communications 417(2):765–770Google Scholar
  68. Holzapfel GA, Ogden RW (eds) (2006) Mechanics of Biological Tissue. Springer, BerlinGoogle Scholar
  69. van Hove RP, Nolte PA, Vatsa A, Semeins CM, Salmon PL, Smit TH, Klein-Nulend J (2009) Osteocyte morphology in human tibiae of different bone pathologies with different bone mineral density — Is there a role for mechanosensing? Bone 45(2):321–329Google Scholar
  70. Imatani S, Maugin GA (2002) A constitutive model for material growth and its application to threedimensional finite element analysis. Mechanics Research Communications 29(6):477–483Google Scholar
  71. Khalili N, Selvadurai APS (2003) A fully coupled constitutive model for thermo-hydro-mechanical analysis in elastic media with double porosity. Geophysical Research Letters 30(24)Google Scholar
  72. Komori T (2013) Functions of the osteocyte network in the regulation of bone mass. Cell and Tissue Research 352(2):191–198Google Scholar
  73. Kühl M, Sheldahl LC, Park M, Miller JR, Moon RT (2000) The Wnt/Ca2+ pathway: a new vertebrate Wnt signaling pathway takes shape. Trends in Genetics 16(7):279–283Google Scholar
  74. Lekszycki T, dell’Isola F (2012) A mixture model with evolving mass densities for describing synthesis and resorption phenomena in bones reconstructed with bio-resorbable materials. ZAMM Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 92(6):426–444Google Scholar
  75. Lekszycki T, Bucci S, Del Vescovo D, Turco E, Rizzi NL (2017) A comparison between different approaches for modelling media with viscoelastic properties via optimization analyses. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 97(5):515–531Google Scholar
  76. Lemaire T, Kaiser J, Naili S, Sansalone V (2010) Modelling of the transport in electrically charged porous media including ionic exchanges. Mechanics Research Communications 37(5):495–499Google Scholar
  77. Li J, Slesarenko V, Rudykh S (2019) Microscopic instabilities and elastic wave propagation in finitely deformed laminates with compressible hyperelastic phases. European Journal of Mechanics-A/Solids 73:126–136Google Scholar
  78. Lu Y, Lekszycki T (2017) Modelling of bone fracture healing: influence of gap size and angiogenesis into bioresorbable bone substitute. Mathematics and Mechanics of Solids 22(10):1997–2010Google Scholar
  79. Lu Y, Lekszycki T (2018) New description of gradual substitution of graft by bone tissue including biomechanical and structural effects, nutrients supply and consumption. Continuum Mechanics and Thermodynamics 30(5):995–1009Google Scholar
  80. Lurie S, Solyaev Y, Volkov A, Volkov-Bogorodskiy D (2018a) Bending problems in the theory of elastic materials with voids and surface effects. Mathematics and Mechanics of Solids 23(5):787–804Google Scholar
  81. Lurie SA, Kalamkarov YO A L and Solyaev, Ustenko AD, Volkov AV (2018b) Continuum microdilatation modeling of auxetic metamaterials. International Journal of Solids and Structures 132:188–200Google Scholar
  82. Madeo A, George D, Lekszycki T, Nierenberger M, Remond Y (2012) A second gradient continuum model accounting for some effects of micro-structure on reconstructed bone remodelling. Comptes Rendus Mécanique 340(8):575–589Google Scholar
  83. Martin RB (1984) Porosity and specific surface of bone. Critical Reviews™ in Biomedical Engineering 10(3):179–222Google Scholar
  84. Menzel A (2005) Modelling of anisotropic growth in biological tissues. Biomechanics and Modeling in Mechanobiology 3(3):147–171Google Scholar
  85. Misra A, Poorsolhjouy P (2015) Identification of higher-order elastic constants for grain assemblies based upon granular micromechanics. Mathematics and Mechanics of Complex Systems 3(3):285–308Google Scholar
  86. Misra A, Marangos O, Parthasarathy R, Spencer P (2013) Micro-scale analysis of compositional and mechanical properties of dentin using homotopic measurements. In: Andreaus U, Iacoviello D (eds) Biomedical Imaging and Computational Modeling in Biomechanics. Lecture Notes in Computational Vision and Biomechanics, vol 4, Springer, Dordrecht, pp 131–141Google Scholar
  87. Misra A, Parthasarathy R, Singh V, Spencer P (2015) Micro-poromechanics model of fluidsaturated chemically active fibrous media. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 95(2):215–234Google Scholar
  88. Mlodzik M (2002) Planar cell polarization: do the same mechanisms regulate Drosophila tissue polarity and vertebrate gastrulation? Trends in Genetics 18(11):564–571Google Scholar
  89. Mullender MG, Huiskes R, Weinans H (1994) A physiological approach to the simulation of bone remodeling as a self-organizational control process. Journal of Biomechanics 27(11):1389– 1394Google Scholar
  90. Niiranen J, Niemi AH (2017) Variational formulations and general boundary conditions for sixth-order boundary value problems of gradient-elastic Kirchhoff plates. European Journal of Mechanics-A/Solids 61:164–179Google Scholar
  91. Niiranen J, Balobanov V, Kiendl J, Hosseini SB (2019) Variational formulations, model comparisons and numerical methods for Euler–Bernoulli micro-and nano-beam models. Mathematics and Mechanics of Solids 24(1):312–335Google Scholar
  92. Park HC, Lakes RS (1986) Cosserat micromechanics of human bone: strain redistribution by a hydration-sensitive constituent. Journal of Biomechanics 19(5):385–397Google Scholar
  93. Pinson KI, Brennan J, Monkley S, Avery BJ, Skarnes WC (2000) An LDL-receptor-related protein mediates Wnt signalling in mice. Nature 407(6803):535Google Scholar
  94. Placidi L, Barchiesi E (2018) Energy approach to brittle fracture in strain-gradient modelling. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2210):20170,878Google Scholar
  95. Placidi L, Barchiesi E, Misra A (2018a) A strain gradient variational approach to damage: a comparison with damage gradient models and numerical results. Mathematics and Mechanics of Complex Systems 6(2):77–100Google Scholar
  96. Placidi L, Misra A, Barchiesi E (2018b) Two-dimensional strain gradient damage modeling: a variational approach. Zeitschrift für angewandte Mathematik und Physik 69(3):56Google Scholar
  97. Prakash C, Singh S, Farina I, Fraternali F, Feo L (2018) Physical-mechanical characterization of biodegradable Mg-3Si-HA composites. PSU Research Review 2(2):152–174Google Scholar
  98. Prendergast PJ, Taylor D (1994) Prediction of bone adaptation using damage accumulation. Journal of Biomechanics 27(8):1067–1076Google Scholar
  99. Roux W (1895) Der Kampf der Teile im Organismus. 1881. Leipzig: Engelmann Ruimerman R, Hilbers P, van Rietbergen B, Huiskes R (2005) A theoretical framework for strainrelated trabecular bone maintenance and adaptation. Journal of Biomechanics 38(4):931–41Google Scholar
  100. Sansalone V, Kaiser J, Naili S, Lemaire T (2013) Interstitial fluid flow within bone canaliculi and electro-chemo-mechanical features of the canalicular milieu. Biomechanics and Modeling in Mechanobiology 12(3):533–553Google Scholar
  101. Scala I, Rosi G, Nguyen VH, Vayron R, Haiat G, Seuret S, Jaffard S, Naili S (2018) Ultrasonic characterization and multiscale analysis for the evaluation of dental implant stability: A sensitivity study. Biomedical Signal Processing and Control 42:37–44Google Scholar
  102. Seppecher P (1993) Equilibrium of a Cahn-Hilliard fluid on a wall: influence of the wetting properties of the fluid upon the stability of a thin liquid film. European Journal of Mechanics Series B Fluids 12:69–69Google Scholar
  103. Seppecher P (2000) Second-gradient theory: application to Cahn-Hilliard fluids. In: Maugin GA, Drouot R, Sidoroff F (eds) Continuum Thermomechanics. Solid Mechanics and Its Applications, vol 76, Springer, Dordrecht, pp 379–388Google Scholar
  104. Spagnuolo M, Barcz K, Pfaff A, dell’Isola F, Franciosi P (2017) Qualitative pivot damage analysis in aluminum printed pantographic sheets: numerics and experiments. Mechanics Research Communications 83:47–52Google Scholar
  105. Spingarn C, Wagner D, Remond Y, George D (2017) Multiphysics of bone remodeling: a 2D mesoscale activation simulation. Bio-medical Materials and Engineering 28(s1):S153–S158Google Scholar
  106. Stern AR, Nicolella DP (2013) Measurement and estimation of osteocyte mechanical strain. Bone 54(2):191–195Google Scholar
  107. Taber LA (1995) Biomechanics of growth, remodeling, and morphogenesis. Applied Mechanics Reviews 48:487–545Google Scholar
  108. Taber LA (2009) Towards a unified theory for morphomechanics. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 367(1902):3555–3583Google Scholar
  109. Turner CH (1991) Homeostatic control of bone structure: An application of feedback theory. Bone 12(3):203–217Google Scholar
  110. Turner CH (1998) Three rules for bone adaptation to mechanical stimuli. Bone 23(5):399–407Google Scholar
  111. Vatsa A, Breuls RG, Semeins CM, Salmon PL, Smit TH, Klein-Nulend J (2008) Osteocyte morphology in fibula and calvaria—Is there a role for mechanosensing? Bone 43(3):452–458Google Scholar
  112. Yang JFC, Lakes RS (1982) Experimental study of micropolar and couple stress elasticity in compact bone in bending. Journal of Biomechanics 15(2):91–98Google Scholar
  113. Yeremeyev VA, Zubov LM (1999) The theory of elastic and viscoelastic micropolar liquids. Journal of Applied Mathematics and Mechanics 63(5):755–767Google Scholar
  114. Yildizdag ME, Demirtas M, Ergin A (2018) Multipatch discontinuous Galerkin isogeometric analysis of composite laminates. Continuum Mechanics and Thermodynamics pp 1–14,  https://doi.org/10.1007/s00161-018-0696-9
  115. Yildizdag ME, Ardic IT, Demirtas M, Ergin A (2019) Hydroelastic vibration analysis of plates partially submerged in fluid with an isogeometric FE-BE approach. Ocean Engineering 172:316– 329Google Scholar
  116. Yoo A, Jasiuk I (2006) Couple-stress moduli of a trabecular bone idealized as a 3D periodic cellular network. Journal of Biomechanics 39(12):2241–2252Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ivan Giorgio
    • 1
    • 2
    Email author
  • Ugo Andreaus
    • 1
  • Faris Alzahrani
    • 3
  • Tasawar Hayat
    • 3
    • 4
  • Tomasz Lekszycki
    • 5
  1. 1.Department of Structural and Geotechnical EngineeringUniversità di Roma La SapienzaRomeItaly
  2. 2.International Research Center for the Mathematics and Mechanics of Complex Systems—M&MoCS, Università dell’AquilaL’AquilaItaly
  3. 3.NAAM Research Group, Department of MathematicsKing Abdulaziz UniversityJeddahSaudi Arabia
  4. 4.Department of MathematicsQuaid-I-Azam UniversityIslamabadPakistan
  5. 5.Faculty of Production EngineeringWarsaw University of TechnologyWarsawPoland

Personalised recommendations