Advertisement

A Computational Approach for Determination of Parameters in Generalized Mechanics

  • Bilen Emek AbaliEmail author
  • Hua Yang
  • Panayiotis Papadopoulos
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 120)

Abstract

Metamaterials are functionalized by specifying a structure at a microscopic length scale such that they provide a tailored deformation response at a macroscopic length scale. Their modeling at the macroscale is attained by using the generalized mechanics that incorporates higher gradients of the displacement leading to additional parameters effected by the “inner” structure at the microscale. As these additional parameters are a consequence of the inner structure, we propose a general methodology for determining them by using a computational approach. The inner structure is given and the presented strategy achieves numerical values of all homogenized parameters to be used in the generalized mechanics for modeling a structure at the macroscale.

Keywords

Parameter determination Material modeling Inverse analysis Finite element method Generalized mechanics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abali BE (2017) Technical University of Berlin, Institute of Mechanics, Chair of Continuum Mechanics and Material Theory, Computational Reality. http://www.lkm.tuberlin.de/ComputationalReality/
  2. Abali BE (2019) Revealing the physical insight of a length-scale parameter in metamaterials by exploiting the variational formulation. Continuum Mechanics and Thermodynamics 31(4):885–894Google Scholar
  3. Abali BE, Müller WH (2016) Numerical solution of generalized mechanics based on a variational formulation. Oberwolfach reports - Mechanics of Materials: Mechanics of Interfaces and Evolving Microstructure 17(1):9–12Google Scholar
  4. Abali BE, Müller WH, Eremeyev VA (2015) Strain gradient elasticity with geometric nonlinearities and its computational evaluation. Mechanics of Advanced Materials and Modern Processes 1(1):1–11Google Scholar
  5. Abali BE, Müller WH, dell’Isola F (2017) Theory and computation of higher gradient elasticity theories based on action principles. Archive of Applied Mechanics 87(9):1495–1510Google Scholar
  6. Abdoul-Anziz H, Seppecher P (2018) Strain gradient and generalized continua obtained by homogenizing frame lattices. Mathematics and Mechanics of Complex Systems 6(3):213–250Google Scholar
  7. Alnaes MS, Logg A, Mardal KA, Skavhaug O, Langtangen HP (2009) Unified framework for finite element assembly. International Journal of Computational Science and Engineering 4(4):231–244Google Scholar
  8. Barboura S, Li J (2018) Establishment of strain gradient constitutive relations by using asymptotic analysis and the finite element method for complex periodic microstructures. International Journal of Solids and Structures 136:60–76Google Scholar
  9. Barchiesi E, Ganzosch G, Liebold C, Placidi L, Grygoruk R, Müller WH (2018) Out-of-plane buckling of pantographic fabrics in displacement-controlled shear tests: experimental results and model validation. Continuum Mechanics and Thermodynamics 31(1):33–45Google Scholar
  10. Bensoussan A, Lions JL, Papanicolaou G (1978) Asymptotic Analysis for Periodic Structures. North-Holland, AmsterdamGoogle Scholar
  11. Berryman JG (2005) Bounds and self-consistent estimates for elastic constants of random polycrystals with hexagonal, trigonal, and tetragonal symmetries. Journal of the Mechanics and Physics of Solids 53(10):2141–2173Google Scholar
  12. Bigoni D, Drugan W (2007) Analytical derivation of cosserat moduli via homogenization of heterogeneous elastic materials. Journal of Applied Mechanics 74(4):741–753Google Scholar
  13. Castañeda PP, Tiberio E (2000) A second-order homogenization method in finite elasticity and applications to black-filled elastomers. Journal of the Mechanics and Physics of Solids 48(6-7):1389–1411Google Scholar
  14. Chen C, Pei Y, De Hosson JTM (2010) Effects of size on the mechanical response of metallic glasses investigated through in situ tem bending and compression experiments. Acta Materialia 58(1):189–200Google Scholar
  15. Chung PW, Tamma KK, Namburu RR (2001) Asymptotic expansion homogenization for heterogeneous media: computational issues and applications. Composites Part A: Applied Science and Manufacturing 32(9):1291–1301Google Scholar
  16. Dormieux L, Kondo D, Ulm FJ (2006) Microporomechanics. John Wiley & SonsGoogle Scholar
  17. Eremeyev VA (2016) On effective properties of materials at the nano-and microscales considering surface effects. Acta Mechanica 227(1):29–42Google Scholar
  18. Eremeyev VA, Lebedev LP, Altenbach H (2012) Foundations of Micropolar Mechanics. Springer Science & Business MediaGoogle Scholar
  19. Eringen A (1968) Mechanics of micromorphic continua. In: Kröner E (ed) Mechanics of Generalized Continua, Springer-Verlag, Berlin, pp 18–35Google Scholar
  20. Eringen A, Suhubi E (1964) Nonlinear theory of simple micro-elastic solids. International Journal of Engineering Science 2:189–203Google Scholar
  21. Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the Royal Society of London Series A, Mathematical and Physical Sciences 241(1226):376–396Google Scholar
  22. Forest S, Dendievel R, Canova GR (1999) Estimating the overall properties of heterogeneous cosserat materials. Modelling and Simulation in Materials Science and Engineering 7(5):829Google Scholar
  23. Forest S, Pradel F, Sab K (2001) Asymptotic analysis of heterogeneous cosserat media. International Journal of Solids and Structures 38(26-27):4585–4608Google Scholar
  24. Ganzosch G, Hoschke K, Lekszycki T, Giorgio I, Turco E, Müller WH (2018) 3D-measurements of 3D-deformations of pantographic structures. Technische Mechanik 38(3):233–245Google Scholar
  25. GNU Public (2007) Gnu general public license. http://www.gnu.org/copyleft/gpl.html
  26. Hashin Z (1991) The spherical inclusion with imperfect interface. Journal of Applied Mechanics 58(2):444–449Google Scholar
  27. Hashin Z, Shtrikman S (1962) On some variational principles in anisotropic and nonhomogeneous elasticity. Journal of the Mechanics and Physics of Solids 10(4):335–342Google Scholar
  28. Hill R (1972) On constitutive macro-variables for heterogeneous solids at finite strain. Proceedings of the Royal Society of London A Mathematical and Physical Sciences 326(1565):131–147Google Scholar
  29. Hollister SJ, Kikuchi N (1992) A comparison of homogenization and standard mechanics analyses for periodic porous composites. Computational Mechanics 10(2):73–95Google Scholar
  30. Irving J, Kirkwood J (1950) The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. The Journal of Chemical Physics 18:817–829Google Scholar
  31. Ivanova EA, Vilchevskaya EN (2016) Micropolar continuum in spatial description. Continuum Mechanics and Thermodynamics 28(6):1759–1780Google Scholar
  32. Jeong J, Ramézani H, Münch I, Neff P (2009) A numerical study for linear isotropic cosserat elasticity with conformally invariant curvature. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik: Applied Mathematics and Mechanics 89(7):552–569Google Scholar
  33. Kachanov M, Sevostianov I (2013) Effective properties of heterogeneous materials, Solid Mechanics and Its Applications, vol 193. SpringerGoogle Scholar
  34. Kanaun S, Kudryavtseva L (1986) Spherically layered inclusions in a homogeneous elastic medium. Journal of Applied Mathematics and Mechanics 50(4):483–491Google Scholar
  35. Khakalo S, Niiranen J (2017) Isogeometric analysis of higher-order gradient elasticity by user elements of a commercial finite element software. Computer-Aided Design 82:154–169Google Scholar
  36. Kouznetsova V, Brekelmans W, Baaijens F (2001) An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27:37–48Google Scholar
  37. Kushnevsky V, Morachkovsky O, Altenbach H (1998) Identification of effective properties of particle reinforced composite materials. Computational Mechanics 22(4):317–325Google Scholar
  38. Ladeveze P, Neron D, Passieux J (2010) On multiscale computational mechanics with time-space homogenization. In: Fish J (ed) Multiscale Methods: Bridging the Scales in Science and Engineering, Oxford University Press, New York, pp 247–284Google Scholar
  39. Lam DC, Yang F, Chong A, Wang J, Tong P (2003) Experiments and theory in strain gradient elasticity. Journal of the Mechanics and Physics of Solids 51(8):1477–1508Google Scholar
  40. Lebensohn R, Liu Y, Castaneda PP (2004) On the accuracy of the self-consistent approximation for polycrystals: comparison with full-field numerical simulations. Acta Materialia 52(18):5347–5361Google Scholar
  41. Levin V (1976) Determination of composite material elastic and thermoelastic constants. Mechanics of Solids 11(6):119–126Google Scholar
  42. Li J (2011) Establishment of strain gradient constitutive relations by homogenization. Comptes Rendus Mécanique 339(4):235–244Google Scholar
  43. Logg A, Mardal KA, Wells G (2012) Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book, vol 84. Springer Science & Business MediaGoogle Scholar
  44. Mandadapu KK, Abali BE, Papadopoulos P (2018) On the polar nature and invariance properties of a thermomechanical theory for continuum-on-continuum homogenization. arXiv preprint arXiv:180802540
  45. Mercer B, Mandadapu K, Papadopoulos P (2015) Novel formulations of microscopic boundary-value problems in continuous multiscale finite element methods. Computer Methods in Applied Mechanics and Engineering 286:268–292Google Scholar
  46. Miehe C, Schotte J, Lambrecht M (2002) Homogenization of inelastic solid materials at finite strains based on incremental minimization principles. Application to the texture analysis of polycrystals. J Mech Phys Solids 50:2123–2167Google Scholar
  47. Mindlin R (1964) Micro-structure in linear elasticity. Archive for Rational Mechanics and Analysis 16(1):51–78Google Scholar
  48. Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgica 21(5):571–574Google Scholar
  49. Namazu T, Isono Y, Tanaka T (2000) Evaluation of size effect on mechanical properties of single crystal silicon by nanoscale bending test using AFM. Journal of Microelectromechanical Systems 9(4):450–459Google Scholar
  50. Nazarenko L (1996) Elastic properties of materials with ellipsoidal pores. International Applied Mechanics 32(1):46–52Google Scholar
  51. Nazarenko L, Khoroshun L, Müller WH, Wille R (2009) Effective thermoelastic properties of discrete-fiber reinforced materials with transversally-isotropic components. Continuum Mechanics and Thermodynamics 20(7):429–458Google Scholar
  52. Nazarenko L, Bargmann S, Stolarski H (2016) Lurie solution for spherical particle and spring layer model of interphases: Its application in analysis of effective properties of composites. Mechanics of Materials 96:39–52Google Scholar
  53. Nazarenko L, Stolarski H, Khoroshun L, Altenbach H (2018) Effective thermo-elastic properties of random composites with orthotropic components and aligned ellipsoidal inhomogeneities. International Journal of Solids and Structures 136:220–240Google Scholar
  54. Nemat-Nasser S, Hori M (2013) Micromechanics: Overall Properties of Heterogeneous Materials, vol 37. ElsevierGoogle Scholar
  55. Nemat-Nasser S, Srivastava A (2011) Overall dynamic constitutive relations of layered elastic composites. Journal of the Mechanics and Physics of Solids 59:1953–1965Google Scholar
  56. Pideri C, Seppecher P (1997) A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium. Continuum Mechanics and Thermodynamics 9(5):241–257Google Scholar
  57. Pietraszkiewicz W, Eremeyev V (2009) On natural strain measures of the non-linear micropolar continuum. International Journal of Solids and Structures 46(3):774–787Google Scholar
  58. Placidi L, Greco L, Bucci S, Turco E, Rizzi NL (2016) A second gradient formulation for a 2d fabric sheet with inextensible fibres. Zeitschrift für angewandte Mathematik und Physik 67(5):114Google Scholar
  59. Polizzotto C (2013a) A second strain gradient elasticity theory with second velocity gradientGoogle Scholar
  60. inertia–Part I: Constitutive equations and quasi-static behavior. International Journal of Solids and Structures 50(24):3749–3765Google Scholar
  61. Polizzotto C (2013b) A second strain gradient elasticity theory with second velocity gradientGoogle Scholar
  62. inertia–Part II: Dynamic behavior. International Journal of Solids and Structures 50(24):3766–3777Google Scholar
  63. Rahali Y, Giorgio I, Ganghoffer J, dell’Isola F (2015) Homogenization à la Piola produces second gradient continuum models for linear pantographic lattices. International Journal of Engineering Science 97:148–172Google Scholar
  64. Reiher JC, Giorgio I, Bertram A (2016) Finite-element analysis of polyhedra under point and line forces in second-strain gradient elasticity. Journal of Engineering Mechanics 143(2):04016,112Google Scholar
  65. Reuss A (1929) Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1):49–58Google Scholar
  66. Sburlati R, Cianci R, Kashtalyan M (2018) Hashin’s bounds for elastic properties of particle-reinforced composites with graded interphase. International Journal of Solids and Structures 138:224–235Google Scholar
  67. Seppecher P, Alibert JJ, dell’Isola F (2011) Linear elastic trusses leading to continua with exotic mechanical interactions. Journal of Physics: Conference Series 319(1):012,018Google Scholar
  68. Sevostianov I, Kachanov M (2006) Homogenization of a nanoparticle with graded interface. International Journal of Fracture 139(1):121–127Google Scholar
  69. Sevostianov I, Kachanov M (2014) On some controversial issues in effective field approaches to the problem of the overall elastic properties. Mechanics of Materials 69(1):93–105Google Scholar
  70. Shafiro B, Kachanov M (2000) Anisotropic effective conductivity of materials with nonrandomly oriented inclusions of diverse ellipsoidal shapes. Journal of Applied Physics 87(12):8561–8569Google Scholar
  71. Solyaev Y, Lurie S, Ustenko A (2019) Numerical modeling of a composite auxetic metamaterials using micro-dilatation theory. Continuum Mechanics and Thermodynamics 31(4):1099–1107Google Scholar
  72. Steinmann P (1994) A micropolar theory of finite deformation and finite rotation multiplicative elastoplasticity. International Journal of Solids and Structures 31(8):1063–1084Google Scholar
  73. Temizer I (2012) On the asymptotic expansion treatment of two-scale finite thermoelasticity. International Journal of Engineering Science 53:74–84Google Scholar
  74. Turco E, Golaszewski M, Giorgio I, D’Annibale F (2017) Pantographic lattices with nonorthogonal fibres: experiments and their numerical simulations. Composites Part B: Engineering 118:1–14Google Scholar
  75. Voigt W (1889) Über die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper. Annalen der Physik 274(12):573–587Google Scholar
  76. Willis J (1977) Bounds and self-consistent estimates for the overall properties of anisotropic composites. Journal of the Mechanics and Physics of Solids 25(3):185–202Google Scholar
  77. Yang H, Ganzosch G, Giorgio I, Abali BE (2018) Material characterization and computations of a polymeric metamaterial with a pantographic substructure. Zeitschrift für angewandte Mathematik und Physik 69(4):105Google Scholar
  78. Zheng QS, Du DX (2001) An explicit and universally applicable estimate for the effective properties of multiphase composites which accounts for inclusion distribution. Journal of the Mechanics and Physics of Solids 49(11):2765–2788Google Scholar
  79. Zohdi TI (2004) Homogenization methods and multiscale modeling. In: Stein E, de Borst R, Hughes TJR (eds) Encyclopedia of Computational Mechanics, Wiley Online Library, vol 2: Solids and Structures, pp 407–430Google Scholar
  80. Zohdi TI, Wriggers P (2008) An Introduction to Computational Micromechanics. Springer Science & Business MediaGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Bilen Emek Abali
    • 1
    Email author
  • Hua Yang
    • 1
  • Panayiotis Papadopoulos
    • 2
  1. 1.Technische Universität Berlin, Institute of MechanicsBerlinGermany
  2. 2.University of California, Berkeley, Department of Mechanical EngineeringBerkeleyUSA

Personalised recommendations