Plasma Description

  • Victor Montagud-CampsEmail author
Part of the Springer Theses book series (Springer Theses)


We adopt a one-fluid description (Magnetohydrodynamics or MHD) of the solar wind plasma. A fluid description describes the plasma in terms of the evolution of its macroscopic variables: density, velocity, pressure, heat flux, ...and the evolution of the magnetic and electric fields, \(\mathbf B \) and \(\mathbf E \), given by Maxwell’s equations. In this chapter we detail the MHD equations and the limitations of this model. We then introduced the Expanding Box Model equations, a modified version of the MHD equations that accounts for the radial expansion of the solar wind.


  1. 1.
    Chen FF (1974) Introduction to plasma physics. Springer, US. Scholar
  2. 2.
    Dong Y, Verdini A, Grappin R (2014) Evolution of turbulence in the expanding solar wind, a numerical study. Astrophys J 793(2):118. Scholar
  3. 3.
    Grappin R, Velli M, Mangeney A (1993) Nonlinear wave evolution in the expanding solar wind. Phys Rev Lett 70(14):2190–2193ADSCrossRefGoogle Scholar
  4. 4.
    Hellinger P, Matteini L, Štverák Š, Travnicek P, Marsch E (2011) Heating and cooling of protons in the fast solar wind between 0.3 and 1 AU: Helios revisited. J Geophys Res 116(A9).
  5. 5.
    Hellinger P, Travnicek P, Štverák Š, Matteini L, Velli M (2013) Proton thermal energetics in the solar wind: Helios reloaded. J Geophys Res Space Phys 118(4):1351–1365ADSCrossRefGoogle Scholar
  6. 6.
    Montagud-Camps V, Grappin R, Verdini A (2018) Turbulent heating between 0.2 and 1 au: a numerical study. Astrophys J 853(2):153.
  7. 7.
    Totten TL, Freeman JW, Arya S (1995) An empirical determination of the polytropic index for the free-streaming solar wind using Helios 1 data. J Geophys Res 100(A1):13–17ADSCrossRefGoogle Scholar
  8. 8.
    Verdini A, Grappin R (2015) Imprints of expansion on the local anisotropy of Solar Wind turbulence. Astrophys J Lett 808(2):L34ADSCrossRefGoogle Scholar
  9. 9.
    Verdini A, Grappin R (2016) Beyond the maltese cross: geometry of turbulence between 0.2 and 1 au. Astrophys J 831(2):1–8Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Surface and Plasma ScienceCharles UniversityPragueCzech Republic

Personalised recommendations