Future Work: Temperature Anisotropy Description

  • Victor Montagud-CampsEmail author
Part of the Springer Theses book series (Springer Theses)


The EBM equations assume the MHD closure, that is, that proton temperature is isotropic. This assumption is not always valid. As it can be seen from 2D cuts of the 3D velocity distribution functions of protons, while the core of the velocity distribution function for slow winds is isotropic, the distribution for fast winds is perpendicular to the mean magnetic field axis. Consequently, temperature anisotropy is more important for fast winds than for slow winds. Here, we propose how to take into account this property of the solar wind that has not been considered in this thesis.


  1. 1.
    Chew GF, Goldberger M, Low FE (1956) The Boltzmann equation an d the one-fluid hydromagnetic equations in the absence of particle collisions. In: The royal society, vol 236Google Scholar
  2. 2.
    Hellinger P, Travnicek P, Štverák Š, Matteini L, Velli M (2013) Proton thermal energetics in the solar wind: Helios reloaded. J Geophys Res Space Phys 118(4):1351–1365ADSCrossRefGoogle Scholar
  3. 3.
    Hellinger P, Matteini L, Štverák Š, Travnicek P, Marsch E (2011) Heating and cooling of protons in the fast solar wind between 0.3 and 1 AU: Helios revisited. J Geophys Res 116(A9).
  4. 4.
    Leubner MP, Viñas AF (1986) Stability analysis of double-peaked proton distribution functions in the solar wind. J Geophys Res 91(A12):13366ADSCrossRefGoogle Scholar
  5. 5.
    Marsch E, Mühlhäuser KH, Rosenbauer H, Schwenn R (1983) On the equation of state of solar wind ions derived from Helios measurements. J Geophys Res 88(A4):2982ADSCrossRefGoogle Scholar
  6. 6.
    Marsch E, Mühlhäuser KH, Schwenn R, Rosenbauer H, Pilipp W, Neubauer FM (1982) Solar wind protons: three-dimensional velocity distributions and derived plasma parameters measured between 0.3 and 1 AU. J Geophys Res 87(A1):52–72.
  7. 7.
    Matteini L, Landi S, Hellinger P, Pantellini F, Maksimovic, Milan, Velli M, Goldstein BE, Marsch E (2007) Evolution of the solar wind proton temperature anisotropy from 0.3 to 2.5 AU. Geophysical Research Letters 34(20):A01106–5Google Scholar
  8. 8.
    Tenerani A, Velli M, Hellinger P (2017) The parametric instability of Alfvén waves: effects of temperature anisotropy. Astrophys J 851(2):99ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Surface and Plasma ScienceCharles UniversityPragueCzech Republic

Personalised recommendations