Acoustic Waves in an Inhomogeneous Medium

  • David Colton
  • Rainer Kress
Part of the Applied Mathematical Sciences book series (AMS, volume 93)


Until now, we have only considered the scattering of acoustic and electromagnetic time-harmonic waves in a homogeneous medium in the exterior of an impenetrable obstacle. For the remaining chapters of this book, we shall be considering the scattering of acoustic and electromagnetic waves by an inhomogeneous medium of compact support, and in this chapter we shall consider the direct scattering problem for acoustic waves. We shall content ourselves with the simplest case when the velocity potential has no discontinuities across the boundary of the inhomogeneous medium and shall again use the method of integral equations to investigate the direct scattering problem. However, since boundary conditions are absent, we shall make use of volume potentials instead of surface potentials as in the previous chapters.


  1. 30.
    Bers, L., John, F., and Schechter, M.: Partial Differential Equations. John Wiley, New York 1964.zbMATHGoogle Scholar
  2. 57.
    Cakoni, F., Colton, D., and Haddar, H.: Inverse Scattering Theory and Transmission Eigenvalues. SIAM, Philadelphia 2016.CrossRefGoogle Scholar
  3. 92.
    Colton, D., and Kirsch, A.: An approximation problem in inverse scattering theory. Applicable Analysis 41, 23–32 (1991).MathSciNetCrossRefGoogle Scholar
  4. 95.
    Colton, D., Kirsch, A., and Päivärinta, L.: Far field patterns for acoustic waves in an inhomogeneous medium. SIAM J. Math. Anal. 20, 1472–1483 (1989).MathSciNetCrossRefGoogle Scholar
  5. 100.
    Colton, D., and Kress, R.: Eigenvalues of the far field operator and inverse scattering theory. SIAM J. Math. Anal. 26, 601–615 (1995).MathSciNetCrossRefGoogle Scholar
  6. 101.
    Colton, D., and Kress, R.: Eigenvalues of the far field operator for the Helmholtz equation in an absorbing medium. SIAM J. Appl. Math. 55, 1724–1735 (1995).MathSciNetCrossRefGoogle Scholar
  7. 102.
    Colton, D., and Kress, R.: On the denseness of Herglotz wave functions and electromagnetic Herglotz pairs in Sobolev spaces. Math. Methods Applied Science 24, 1289–1303 (2001).MathSciNetCrossRefGoogle Scholar
  8. 104.
    Colton, D., and Kress, R.: Integral Equation Methods in Scattering Theory. SIAM Publications, Philadelphia 2013.CrossRefGoogle Scholar
  9. 114.
    Colton, D., and Monk, P: The inverse scattering problem for acoustic waves in an inhomogeneous medium. Quart. J. Mech. Appl. Math. 41, 97–125 (1988).MathSciNetCrossRefGoogle Scholar
  10. 124.
    Colton, D., Päivärinta, L., and Sylvester, J.: The interior transmission problem. Inverse Problems and Imaging 1, 13–28 (2007).MathSciNetCrossRefGoogle Scholar
  11. 129.
    Cossonnière, A. and Haddar, H.: Surface integral formulation of the interior transmission problem. J. Integral Equations Applications 25, 341–376 (2013).MathSciNetCrossRefGoogle Scholar
  12. 139.
    Erdélyi, A.: Asymptotic Expansions. Dover Publications, New York 1956.zbMATHGoogle Scholar
  13. 149.
    Gilbarg, D., and Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin 1977.CrossRefGoogle Scholar
  14. 151.
    Goldstein, C.I.: The finite element method with non-uniform mesh sizes applied to the exterior Helmholtz problem. Numer. Math. 38, 61–82 (1981).MathSciNetCrossRefGoogle Scholar
  15. 185.
    Hellwig, G.: Partial Differential Equations. Blaisdell Publishing, New York 1964.zbMATHGoogle Scholar
  16. 195.
    Hohage, T.: On the numerical solution of a three-dimensional inverse medium scattering problem. Inverse Problems 17, 1743–1763 (2001).MathSciNetCrossRefGoogle Scholar
  17. 196.
    Hohage, T.: Fast numerical solution of the electromagnetic medium scattering problem and applications to the inverse problem. J. Comput. Phys. 214, 224–238 (2006).MathSciNetCrossRefGoogle Scholar
  18. 198.
    Hsiao, G.C.: The coupling of boundary element and finite element methods. Z. Angew. Math. Mech. 70, T493–T503 (1990).MathSciNetCrossRefGoogle Scholar
  19. 229.
    Kedzierawski, A.: The inverse scattering problem for time-harmonic acoustic waves in an inhomogeneous medium with complex refraction index. J. Comp. Appl. Math. 47, 83–100 (1993).MathSciNetCrossRefGoogle Scholar
  20. 232.
    Kirsch, A.: The denseness of the far field patterns for the transmission problem. IMA J. Appl. Math. 37, 213–225 (1986).MathSciNetCrossRefGoogle Scholar
  21. 233.
    Kirsch, A.: Properties of far field operators in acoustic scattering. Math. Meth. in the Appl. Sci. 11, 773–787 (1989).MathSciNetCrossRefGoogle Scholar
  22. 251.
    Kirsch, A., and Monk, P.: An analysis of the coupling of finite element and Nyström methods in acoustic scattering. IMA J. Numerical Anal. 14, 523–544 (1994).MathSciNetCrossRefGoogle Scholar
  23. 268.
    Kress, R.: Linear Integral Equations. 3rd ed, Springer, Berlin 2014.CrossRefGoogle Scholar
  24. 297.
    Leis, R.: Initial Boundary Value Problems in Mathematical Physics. John Wiley, New York 1986.CrossRefGoogle Scholar
  25. 315.
    McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge 2000.zbMATHGoogle Scholar
  26. 328.
    Müller, C.: Zur mathematischen Theorie elektromagnetischer Schwingungen. Abh. deutsch. Akad. Wiss. Berlin 3, 5–56 (1945/46).Google Scholar
  27. 331.
    Müller, C: On the behavior of solutions of the differential equation Δu = F(x, u) in the neighborhood of a point. Comm. Pure Appl. Math. 7, 505–515 (1954).MathSciNetCrossRefGoogle Scholar
  28. 365.
    Protter, M.H.: Unique continuation for elliptic equations. Trans. Amer. Math. Soc. 95, 81–90, (1960).MathSciNetCrossRefGoogle Scholar
  29. 375.
    Ringrose, J.R.: Compact Non–Self Adjoint Operators. Van Nostrand Reinhold, London 1971.zbMATHGoogle Scholar
  30. 382.
    Rynne, B.P., and Sleeman, B.D.: The interior transmission problem and inverse scattering from inhomogeneous media. SIAM J. Math. Anal. 22, 1755–1762 (1991).MathSciNetCrossRefGoogle Scholar
  31. 384.
    Saranen, J., and Vainikko, G.: Periodic Integral and Pseudodifferential Equations with Numerical Approximation. Springer, Berlin 2002.CrossRefGoogle Scholar
  32. 386.
    Schatz, A.H.: An observation concerning Ritz–Galerkin methods with indefinite bilinear forms. Math. Comp. 28, 959–962 (1974).MathSciNetCrossRefGoogle Scholar
  33. 387.
    Schechter, M.: Principles of Functional Analysis. Academic Press, New York 1971.zbMATHGoogle Scholar
  34. 390.
    Serov, V., and Sylvester, J.: Transmission eigenvalues for degenerate and singular cases. Inverse Problems 28, 065004 (2012).MathSciNetCrossRefGoogle Scholar
  35. 410.
    Vainikko, G.: Fast solvers of the Lippmann–Schwinger equation. In: Direct and Inverse Problems of Mathematical Physics (Gilbert, Kajiwara and Xu, eds). Kluwer, Dordrecht (2000).Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • David Colton
    • 1
  • Rainer Kress
    • 2
  1. 1.Department of Mathematical SciencesUniversity of DelawareNewarkUSA
  2. 2.Institut für Numerische und Angewandte MathematikGeorg-August-Universität GöttingenGöttingenGermany

Personalised recommendations