Advertisement

Direct Acoustic Obstacle Scattering

  • David Colton
  • Rainer Kress
Chapter
Part of the Applied Mathematical Sciences book series (AMS, volume 93)

Abstract

This chapter is devoted to the solution of the direct obstacle scattering problem for acoustic waves.

References

  1. 2.
    Adams, R.A.: Sobolev Spaces. Academic Press, New York 1975.zbMATHGoogle Scholar
  2. 19.
    Atkinson, K.E.: The numerical solution of Laplace’s equation in three dimensions. SIAM J. Numer. Anal. 19, 263–274 (1982).CrossRefMathSciNetzbMATHGoogle Scholar
  3. 20.
    Atkinson, K.E.: The Numerical Solution of Integral Equations of the Second Kind. Cambridge Univ. Press, Cambridge 1997.CrossRefzbMATHGoogle Scholar
  4. 43.
    Bourgeois, L., and Haddar, H.: Identification of generalized impedance boundary conditions in inverse scattering problems. Inverse Problems and Imaging 4, 19–38, (2010).CrossRefMathSciNetzbMATHGoogle Scholar
  5. 44.
    Brakhage, H., and Werner, P.: Über das Dirichletsche Aussenraumproblem für die Helmholtzsche Schwingungsgleichung. Arch. Math. 16, 325–329 (1965).CrossRefMathSciNetzbMATHGoogle Scholar
  6. 77.
    Chandler-Wilde, S. N., Graham, I. G., Langdon, S., and Lindner, M.: Condition number estimates for combined potential boundary integral operators in acoustic scattering. Jour. Integral Equations and Appl. 21, 229–279 (2009).CrossRefMathSciNetzbMATHGoogle Scholar
  7. 86.
    Colton, D.: Partial Differential Equations. Dover Publications, New York 2004.zbMATHGoogle Scholar
  8. 90.
    Colton, D., and Kirsch, A.: Dense sets and far field patterns in acoustic wave propagation. SIAM J. Math. Anal. 15, 996–1006 (1984).CrossRefMathSciNetzbMATHGoogle Scholar
  9. 97.
    Colton, D., and Kress, R.: Dense sets and far field patterns in electromagnetic wave propagation. SIAM J. Math. Anal. 16, 1049–1060 (1985).CrossRefMathSciNetzbMATHGoogle Scholar
  10. 104.
    Colton, D., and Kress, R.: Integral Equation Methods in Scattering Theory. SIAM Publications, Philadelphia 2013.CrossRefzbMATHGoogle Scholar
  11. 111.
    Colton, D., and Monk, P.: A novel method for solving the inverse scattering problem for time-harmonic acoustic waves in the resonance region II. SIAM J. Appl. Math. 46, 506–523 (1986).CrossRefMathSciNetzbMATHGoogle Scholar
  12. 130.
    Davis, P.J.: Interpolation and Approximation. Blaisdell Publishing Company, Waltham 1963.zbMATHGoogle Scholar
  13. 131.
    Davis, P.J., and Rabinowitz, P.: Methods of Numerical Integration. Academic Press, New York 1975.zbMATHGoogle Scholar
  14. 135.
    Duruflé, M., Haddar, H., and Joly, P.: High order generalized impedance boundary conditions in electromagnetic scattering problems. Comptes Rendus Physique 7, 533–542 (2006).CrossRefGoogle Scholar
  15. 136.
    Elliott, D.: Sigmoidal transformations and the trapezoidal rule. ANZIAM Jour. B 40, E77–E137 (1998).Google Scholar
  16. 137.
    Elliott, D. and Prössdorf, S.: An algorithm for the approximate solution of integral equations of Mellin type. Numer. Math. 70, 427–452 (1995).CrossRefMathSciNetzbMATHGoogle Scholar
  17. 143.
    Ganesh, M., and Graham, I. G.: A high-order algorithm for obstacle scattering in three dimensions. J. Comput. Phys. 198, 211–242 (2004).CrossRefMathSciNetzbMATHGoogle Scholar
  18. 148.
    Gieseke, B.: Zum Dirichletschen Prinzip für selbstadjungierte elliptische Differentialoperatoren. Math. Z. 68, 54–62 (1964).CrossRefMathSciNetzbMATHGoogle Scholar
  19. 153.
    Graham, I. G., and Sloan, I. H.: Fully discrete spectral boundary integral methods for Helmholtz problems on smooth closed surfaces in I R 3. Numer. Math. 92, 289–323 (2002).CrossRefMathSciNetzbMATHGoogle Scholar
  20. 155.
    Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman, Boston 1985.zbMATHGoogle Scholar
  21. 164.
    Hackbusch, W.: Multi-grid Methods and Applications. Springer, Berlin 1985.CrossRefzbMATHGoogle Scholar
  22. 168.
    Haddar, H., Joly, P., and Nguyen, H.M.: Generalized impedance boundary conditions for scattering by strongly absorbing obstacles: the scalar case. Math. Models Methods Appl. Sci. 15, 1273–1300 (2005).CrossRefMathSciNetzbMATHGoogle Scholar
  23. 171.
    Hähner, P.: An exterior boundary-value problem for the Maxwell equations with boundary data in a Sobolev space. Proc. Roy. Soc. Edinburgh 109A, 213–224 (1988).CrossRefMathSciNetzbMATHGoogle Scholar
  24. 172.
    Hähner, P.: Eindeutigkeits- und Regularitätssätze für Randwertprobleme bei der skalaren und vektoriellen Helmholtzgleichung. Dissertation, Göttingen 1990.Google Scholar
  25. 184.
    Hartman, P., and Wilcox, C.: On solutions of the Helmholtz equation in exterior domains. Math. Z. 75, 228–255 (1961).CrossRefzbMATHGoogle Scholar
  26. 186.
    Hettlich, F.: Die Integralgleichungsmethode bei Streuung an Körpern mit einer dünnen Schicht. Diplomarbeit, Göttingen 1989.Google Scholar
  27. 199.
    Hsiao, G.C., and Wendland, W. L.: Boundary Integral Equations. Springer, Berlin 2008.CrossRefzbMATHGoogle Scholar
  28. 218.
    Jeon, Y.: A Nyström method for boundary integral equations in domains with a piecewise smooth boundary. Jour. Integral Equations Appl. 5, 221–242 (1993).CrossRefzbMATHGoogle Scholar
  29. 225.
    Jörgens, K.: Lineare Integraloperatoren. Teubner–Verlag, Stuttgart 1970.CrossRefzbMATHGoogle Scholar
  30. 231.
    Kersten, H.: Grenz- und Sprungrelationen für Potentiale mit quadratsummierbarer Dichte. Resultate d. Math. 3, 17–24 (1980).CrossRefzbMATHGoogle Scholar
  31. 232.
    Kirsch, A.: The denseness of the far field patterns for the transmission problem. IMA J. Appl. Math. 37, 213–225 (1986).CrossRefMathSciNetzbMATHGoogle Scholar
  32. 233.
    Kirsch, A.: Properties of far field operators in acoustic scattering. Math. Meth. in the Appl. Sci. 11, 773–787 (1989).CrossRefMathSciNetzbMATHGoogle Scholar
  33. 234.
    Kirsch, A.: Surface gradients and continuity properties for some integral operators in classical scattering theory. Math. Meth. in the Appl. Sci. 11, 789–804 (1989).CrossRefMathSciNetzbMATHGoogle Scholar
  34. 244.
    Kirsch, A., and Hettlich, F.: The Mathematical Theory of Time-Harmonic Maxwell’s Equations. Springer, New York 2015.CrossRefzbMATHGoogle Scholar
  35. 253.
    Kleinman, R., and Martin, P.: On single integral equations for the transmission problem of acoustics. SIAM J. Appl. Math. 48, 307–325 (1988).CrossRefMathSciNetGoogle Scholar
  36. 258.
    Kress, R.: Ein ableitungsfreies Restglied für die trigonometrische Interpolation periodischer analytischer Funktionen. Numer. Math. 16, 389–396 (1971).CrossRefMathSciNetzbMATHGoogle Scholar
  37. 259.
    Kress, R.: Minimizing the condition number of boundary integral operators in acoustic and electromagnetic scattering. Q. Jl. Mech. appl. Math. 38, 323–341 (1985).CrossRefMathSciNetzbMATHGoogle Scholar
  38. 261.
    Kress, R.: On the low wave number asymptotics for the two-dimensional exterior Dirichlet problem for the reduced wave equation. Math. Meth. in the Appl. Sci. 9, 335–341 (1987).CrossRefMathSciNetzbMATHGoogle Scholar
  39. 262.
    Kress, R.: A Nyström method for boundary integral equations in domains with corners. Numer. Math. 58, 145–161 (1990).CrossRefMathSciNetzbMATHGoogle Scholar
  40. 263.
    Kress, R.: Boundary integral equations in time-harmonic acoustic scattering. Mathl. Comput. Modelling 15, 229–243 (1991).CrossRefMathSciNetzbMATHGoogle Scholar
  41. 264.
    Kress, R.: On the numerical solution of a hypersingular integral equation in scattering theory. J. Comp. Appl. Math. 61, 345–360 (1995).CrossRefMathSciNetzbMATHGoogle Scholar
  42. 268.
    Kress, R.: Linear Integral Equations. 3rd ed, Springer, Berlin 2014.CrossRefzbMATHGoogle Scholar
  43. 272.
    Kress, R., and Roach, G.: Transmission problems for the Helmholtz equation. Jour. Math. Phys. 19 1433–1437 (1978).CrossRefMathSciNetzbMATHGoogle Scholar
  44. 284.
    Kussmaul, R.: Ein numerisches Verfahren zur Lösung des Neumannschen Aussenraumproblems für die Helmholtzsche Schwingungsgleichung. Computing 4, 246–273 (1969).CrossRefMathSciNetzbMATHGoogle Scholar
  45. 290.
    Lax, P.D.: Symmetrizable linear transformations. Comm. Pure Appl. Math. 7, 633–647 (1954).CrossRefMathSciNetzbMATHGoogle Scholar
  46. 293.
    Lebedev, N.N.: Special Functions and Their Applications. Prentice-Hall, Englewood Cliffs 1965.CrossRefzbMATHGoogle Scholar
  47. 296.
    Leis, R.: Zur Dirichletschen Randwertaufgabe des Aussenraums der Schwingungsgleichung. Math. Z. 90, 205–211 (1965).CrossRefMathSciNetzbMATHGoogle Scholar
  48. 303.
    Levine, L.M.: A uniqueness theorem for the reduced wave equation. Comm. Pure Appl. Math. 17, 147–176 (1964).CrossRefMathSciNetzbMATHGoogle Scholar
  49. 304.
    Lin, T.C.: The numerical solution of Helmholtz’s equation for the exterior Dirichlet problem in three dimensions. SIAM J. Numer. Anal. 22, 670–686 (1985).CrossRefMathSciNetzbMATHGoogle Scholar
  50. 309.
    Magnus, W.: Fragen der Eindeutigkeit und des Verhaltens im Unendlichen für Lösungen von Δu + k 2 u = 0. Abh. Math. Sem. Hamburg 16, 77–94 (1949).CrossRefMathSciNetzbMATHGoogle Scholar
  51. 310.
    Martensen, E.: Über eine Methode zum räumlichen Neumannschen Problem mit einer Anwendung für torusartige Berandungen. Acta Math. 109, 75–135 (1963).CrossRefMathSciNetzbMATHGoogle Scholar
  52. 315.
    McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge 2000.zbMATHGoogle Scholar
  53. 317.
    Mikhlin, S.G.: Mathematical Physics, an Advanced Course. North-Holland, Amsterdam 1970.zbMATHGoogle Scholar
  54. 329.
    Müller, C.: Über die ganzen Lösungen der Wellengleichung. Math. Annalen 124, 235–264 (1952).CrossRefMathSciNetzbMATHGoogle Scholar
  55. 337.
    Nédélec, J.C.; Acoustic and Electromagnetic Equations. Springer, Berlin 2001.CrossRefzbMATHGoogle Scholar
  56. 346.
    Panich, O.I.: On the question of the solvability of the exterior boundary-value problems for the wave equation and Maxwell’s equations. Usp. Mat. Nauk 20A, 221–226 (1965) (in Russian).Google Scholar
  57. 375.
    Ringrose, J.R.: Compact Non–Self Adjoint Operators. Van Nostrand Reinhold, London 1971.zbMATHGoogle Scholar
  58. 376.
    Rjasanow, S., and Steinbach, O.: The Fast Solution of Boundary Integral Equations. Springer, Berlin 2007.zbMATHGoogle Scholar
  59. 380.
    Ruland, C.: Ein Verfahren zur Lösung von (Δ + k 2)u = 0 in Aussengebieten mit Ecken. Applicable Analysis 7, 69–79 (1978).CrossRefMathSciNetzbMATHGoogle Scholar
  60. 385.
    Sauter, S., and Schwab, C.: Boundary Element Methods. Springer, Berlin 2011.CrossRefzbMATHGoogle Scholar
  61. 389.
    Senior, T.B.A., and Volakis, J.L.: Approximate Boundary Conditions in Electromagnetics. IEEE Electromagnetic Waves Series, vol. 41. The Institution of Electrical Engineers, London 1995.Google Scholar
  62. 395.
    Sloan, I. H., and Womersley, R. S.: Constructive approximations on the sphere. J. Approx. Theory 103, 91–118 (2000).CrossRefMathSciNetzbMATHGoogle Scholar
  63. 414.
    Vekua, I.N.: Metaharmonic functions. Trudy Tbilisskogo matematichesgo Instituta 12, 105–174 (1943).MathSciNetzbMATHGoogle Scholar
  64. 419.
    Weck, N.: Klassische Lösungen sind auch schwache Lösungen. Arch. Math. 20, 628–637 (1969).CrossRefMathSciNetzbMATHGoogle Scholar
  65. 424.
    Werner, P.: Low frequency asymptotics for the reduced wave equation in two-dimensional exterior spaces. Math. Meth. in the Appl. Sc. 8, 134–156 (1986).CrossRefMathSciNetzbMATHGoogle Scholar
  66. 426.
    Weyl, H.: Kapazität von Strahlungsfeldern. Math. Z. 55, 187–198 (1952).Google Scholar
  67. 427.
    Wienert, L.: Die numerische Approximation von Randintegraloperatoren für die Helmholtzgleichung im I R 3. Dissertation, Göttingen 1990.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • David Colton
    • 1
  • Rainer Kress
    • 2
  1. 1.Department of Mathematical SciencesUniversity of DelawareNewarkUSA
  2. 2.Institut für Numerische und Angewandte MathematikGeorg-August-Universität GöttingenGöttingenGermany

Personalised recommendations