Advertisement

Introduction

  • David Colton
  • Rainer Kress
Chapter
Part of the Applied Mathematical Sciences book series (AMS, volume 93)

Abstract

The purpose of this chapter is to provide a survey of our book by placing what we have to say in a historical context. We obviously cannot give a complete account of inverse scattering theory in a book of only a few hundred pages, particularly since before discussing the inverse problem we have to give the rudiments of the theory of the direct problem. Hence, instead of attempting the impossible, we have chosen to present inverse scattering theory from the perspective of our own interests and research program. This inevitably means that certain areas of scattering theory are either ignored or given only cursory attention. In view of this fact, and in fairness to the reader, we have therefore decided to provide a few words at the beginning of our book to tell the reader what we are going to do, as well as what we are not going to do, in the forthcoming chapters.

References

  1. 1.
    Abubakar, A., and van den Berg, P.: Iterative forward and inverse algorithms based on domain integral equations for three-dimensional electric and magnetic objects. J. Comput. Phys. 195, 236–262 (2004).CrossRefzbMATHGoogle Scholar
  2. 11.
    Angell, T.S., Colton, D., and Kirsch, A.: The three dimensional inverse scattering problem for acoustic waves. J. Diff. Equations 46, 46–58 (1982).CrossRefMathSciNetzbMATHGoogle Scholar
  3. 15.
    Angell, T.S., Kleinman, R.E., and Roach, G.F.: An inverse transmission problem for the Helmholtz equation. Inverse Problems 3, 149–180 (1987).CrossRefMathSciNetzbMATHGoogle Scholar
  4. 33.
    Bleistein, N.: Mathematical Methods for Wave Phenomena. Academic Press, Orlando 1984.zbMATHGoogle Scholar
  5. 34.
    Blöhbaum, J.: Optimisation methods for an inverse problem with time-harmonic electromagnetic waves: an inverse problem in electromagnetic scattering. Inverse Problems 5, 463–482 (1989).CrossRefMathSciNetzbMATHGoogle Scholar
  6. 44.
    Brakhage, H., and Werner, P.: Über das Dirichletsche Aussenraumproblem für die Helmholtzsche Schwingungsgleichung. Arch. Math. 16, 325–329 (1965).CrossRefMathSciNetzbMATHGoogle Scholar
  7. 51.
    Cakoni, F., and Colton, D.: Qualitative Methods in Inverse Scattering Theory. Springer, Berlin 2006.zbMATHGoogle Scholar
  8. 54.
    Cakoni, F., Colton, D., and Haddar, H.: On the determination of Dirichlet and transmission eigenvalues from far field data. C. R. Math. Acad. Sci. Paris, Ser. 1 348, 379–383 (2010).Google Scholar
  9. 59.
    Cakoni, F., Colton, D., and Monk, P.: The Linear Sampling Method in Inverse Electromagnetic Scattering. SIAM Publications, Philadelphia, 2011.CrossRefzbMATHGoogle Scholar
  10. 62.
    Cakoni, F., Gintides, D., and Haddar, H.: The existence of an infinite discrete set of transmission eigenvalues. SIAM J. Math. Anal. 42, 237–255 (2010).CrossRefMathSciNetzbMATHGoogle Scholar
  11. 76.
    Chadan, K., and Sabatier, P. C.: Inverse Problems in Quantum Scattering Theory. Springer, Berlin 1989.CrossRefzbMATHGoogle Scholar
  12. 78.
    Chavent, G., Papanicolaou, G., Sacks, P., and Symes, W.: Inverse Problems in Wave Propagation. Springer, Berlin 1997.CrossRefzbMATHGoogle Scholar
  13. 81.
    Chew, W: Waves and Fields in Inhomogeneous Media. Van Nostrand Reinhold, New York 1990.Google Scholar
  14. 89.
    Colton, D., and Hähner, P.: Modified far field operators in inverse scattering theory. SIAM J. Math. Anal. 24, 365–389 (1993).CrossRefMathSciNetzbMATHGoogle Scholar
  15. 90.
    Colton, D., and Kirsch, A.: Dense sets and far field patterns in acoustic wave propagation. SIAM J. Math. Anal. 15, 996–1006 (1984).CrossRefMathSciNetzbMATHGoogle Scholar
  16. 91.
    Colton, D., and Kirsch, A.: Karp’s theorem in acoustic scattering theory. Proc. Amer. Math. Soc. 103, 783–788 (1988).MathSciNetzbMATHGoogle Scholar
  17. 95.
    Colton, D., Kirsch, A., and Päivärinta, L.: Far field patterns for acoustic waves in an inhomogeneous medium. SIAM J. Math. Anal. 20, 1472–1483 (1989).CrossRefMathSciNetzbMATHGoogle Scholar
  18. 97.
    Colton, D., and Kress, R.: Dense sets and far field patterns in electromagnetic wave propagation. SIAM J. Math. Anal. 16, 1049–1060 (1985).CrossRefMathSciNetzbMATHGoogle Scholar
  19. 98.
    Colton, D., and Kress, R.: Karp’s theorem in electromagnetic scattering theory. Proc. Amer. Math. Soc. 104, 764–769 (1988).MathSciNetzbMATHGoogle Scholar
  20. 99.
    Colton, D., and Kress, R.: Time harmonic electromagnetic waves in an inhomogeneous medium. Proc. Royal Soc. Edinburgh 116 A, 279–293 (1990).Google Scholar
  21. 100.
    Colton, D., and Kress, R.: Eigenvalues of the far field operator and inverse scattering theory. SIAM J. Math. Anal. 26, 601–615 (1995).CrossRefMathSciNetzbMATHGoogle Scholar
  22. 101.
    Colton, D., and Kress, R.: Eigenvalues of the far field operator for the Helmholtz equation in an absorbing medium. SIAM J. Appl. Math. 55, 1724–1735 (1995).CrossRefMathSciNetzbMATHGoogle Scholar
  23. 104.
    Colton, D., and Kress, R.: Integral Equation Methods in Scattering Theory. SIAM Publications, Philadelphia 2013.CrossRefzbMATHGoogle Scholar
  24. 105.
    Colton, D., and Kress, R.: Looking back on inverse scattering theory. SIAM Review 60, 779–807 (2018).CrossRefMathSciNetzbMATHGoogle Scholar
  25. 110.
    Colton, D., and Monk, P.: A novel method for solving the inverse scattering problem for time-harmonic acoustic waves in the resonance region. SIAM J. Appl. Math. 45, 1039–1053 (1985).CrossRefMathSciNetzbMATHGoogle Scholar
  26. 112.
    Colton, D., and Monk, P.: The numerical solution of the three dimensional inverse scattering problem for time-harmonic acoustic waves. SIAM J. Sci. Stat. Comp. 8, 278–291 (1987).CrossRefMathSciNetzbMATHGoogle Scholar
  27. 113.
    Colton, D., and Monk, P: The inverse scattering problem for time harmonic acoustic waves in a penetrable medium. Quart. J. Mech. Appl. Math. 40, 189–212 (1987).CrossRefMathSciNetzbMATHGoogle Scholar
  28. 114.
    Colton, D., and Monk, P: The inverse scattering problem for acoustic waves in an inhomogeneous medium. Quart. J. Mech. Appl. Math. 41, 97–125 (1988).CrossRefMathSciNetzbMATHGoogle Scholar
  29. 115.
    Colton, D., and Monk, P: A new method for solving the inverse scattering problem for acoustic waves in an inhomogeneous medium. Inverse Problems 5, 1013–1026 (1989).CrossRefMathSciNetzbMATHGoogle Scholar
  30. 116.
    Colton, D., and Monk, P: A new method for solving the inverse scattering problem for acoustic waves in an inhomogeneous medium II. Inverse Problems 6, 935–947 (1990).CrossRefMathSciNetzbMATHGoogle Scholar
  31. 117.
    Colton, D., and Monk, P: A comparison of two methods for solving the inverse scattering problem for acoustic waves in an inhomogeneous medium. J. Comp. Appl. Math. 42, 5–16 (1992).CrossRefMathSciNetzbMATHGoogle Scholar
  32. 118.
    Colton, D., and Monk, P.: On a class of integral equations of the first kind in inverse scattering theory. SIAM J. Appl. Math. 53, 847–860 (1993).CrossRefMathSciNetzbMATHGoogle Scholar
  33. 119.
    Colton, D., and Monk, P.: A modified dual space method for solving the electromagnetic inverse scattering problem for an infinite cylinder. Inverse Problems 10, 87–107 (1994).CrossRefMathSciNetzbMATHGoogle Scholar
  34. 121.
    Colton, D., and Päivärinta, L.: Far field patterns and the inverse scattering problem for electromagnetic waves in an inhomogeneous medium. Math. Proc. Camb. Phil. Soc. 103, 561–575 (1988).CrossRefMathSciNetzbMATHGoogle Scholar
  35. 122.
    Colton, D., and L. Päivärinta, L.: Far-field patterns for electromagnetic waves in an inhomogeneous medium. SIAM J. Math. Anal. 21, 1537–1549 (1990).Google Scholar
  36. 123.
    Colton, D. and Päivärinta, L.: The uniqueness of a solution to an inverse scattering problem for electromagnetic waves. Arch. Rational Mech. Anal. 119, 59–70 (1992).CrossRefMathSciNetzbMATHGoogle Scholar
  37. 132.
    Devaney, A.J.: Mathematical Foundations of Imaging, Tomography and Wavefield Inversion. Cambridge University Press, Cambridge 2012.CrossRefzbMATHGoogle Scholar
  38. 133.
    Dolph, C. L.: The integral equation method in scattering theory. In: Problems in Analysis (Gunning, ed). Princeton University Press, Princeton, 201–227 (1970).Google Scholar
  39. 158.
    Gutman, S., and Klibanov, M.: Regularized quasi–Newton method for inverse scattering problems. Math. Comput. Modeling 18, 5–31 (1993).CrossRefMathSciNetzbMATHGoogle Scholar
  40. 160.
    Gutman, S., and Klibanov, M.: Iterative method for multidimensional inverse scattering problems at fixed frequencies. Inverse Problems 10, 573–599 (1994).CrossRefMathSciNetzbMATHGoogle Scholar
  41. 163.
    Haas, M., Rieger, W., Rucker, W., and Lehner, G.: Inverse 3D acoustic and electromagnetic obstacle scattering by iterative adaption. In: Inverse Problems of Wave Propagation and Diffraction (Chavent and Sabatier, eds). Springer, Berlin 1997.Google Scholar
  42. 181.
    Hanke, M., Hettlich, F., and Scherzer, O.: The Landweber iteration for an inverse scattering problem. In: Proceedings of the 1995 Design Engineering Technical Conferences, Vol. 3, Part C (Wang et al, eds).Google Scholar
  43. 189.
    Hettlich, F.: An iterative method for the inverse scattering problem from sound-hard obstacles. In: Proceedings of the ICIAM 95, Vol. II, Applied Analysis (Mahrenholz and Mennicken, eds). Akademie Verlag, Berlin (1996).Google Scholar
  44. 193.
    Hohage, T.: Logarithmic convergence rates of the iteratively regularized Gauss–Newton method for an inverse potential and an inverse scattering problem. Inverse Problems 13, 1279–1299 (1997).CrossRefMathSciNetzbMATHGoogle Scholar
  45. 195.
    Hohage, T.: On the numerical solution of a three-dimensional inverse medium scattering problem. Inverse Problems 17, 1743–1763 (2001).CrossRefMathSciNetzbMATHGoogle Scholar
  46. 197.
    Hohage, T., and Langer, S.: Acceleration techniques for regularized Newton methods applied to electromagnetic inverse medium scattering problems. Inverse Problems 26, 074011 (2010).CrossRefMathSciNetzbMATHGoogle Scholar
  47. 202.
    Imbriale, W.A., and Mittra, R.: The two-dimensional inverse scattering problem. IEEE Trans. Ant. Prop. AP-18, 633–642 (1970).CrossRefGoogle Scholar
  48. 212.
    Ivanyshyn, O., and Kress, R.: Nonlinear integral equations in inverse obstacle scattering. In: Mathematical Methods in Scattering Theory and Biomedical Engineering, (Fotiatis and Massalas, eds). World Scientific, Singapore, 39–50 (2006).Google Scholar
  49. 222.
    Johansson, T., and Sleeman, B.: Reconstruction of an acoustically sound-soft obstacle from one incident field and the far field pattern. IMA J. Appl. Math. 72, 96–112 (2007).CrossRefMathSciNetzbMATHGoogle Scholar
  50. 224.
    Jones, D.S.: Acoustic and Electromagnetic Waves. Clarendon Press, Oxford 1986.Google Scholar
  51. 228.
    Karp, S.N.: Far field amplitudes and inverse diffraction theory. In: Electromagnetic Waves (Langer, ed). Univ. of Wisconsin Press, Madison, 291–300 (1962).Google Scholar
  52. 232.
    Kirsch, A.: The denseness of the far field patterns for the transmission problem. IMA J. Appl. Math. 37, 213–225 (1986).CrossRefMathSciNetzbMATHGoogle Scholar
  53. 237.
    Kirsch, A.: Numerical algorithms in inverse scattering theory. In: Ordinary and Partial Differential Equations, Vol. IV, (Jarvis and Sleeman, eds). Pitman Research Notes in Mathematics 289, Longman, London, 93–111 (1993).Google Scholar
  54. 243.
    Kirsch, A., and Grinberg, N.: The Factorization Method for Inverse Problems. Oxford University Press, Oxford, 2008.zbMATHGoogle Scholar
  55. 244.
    Kirsch, A., and Hettlich, F.: The Mathematical Theory of Time-Harmonic Maxwell’s Equations. Springer, New York 2015.CrossRefzbMATHGoogle Scholar
  56. 245.
    Kirsch, A., and Kress, R.: On an integral equation of the first kind in inverse acoustic scattering. In: Inverse Problems (Cannon and Hornung, eds). ISNM 77, 93–102 (1986).Google Scholar
  57. 247.
    Kirsch, A., and Kress, R.: An optimization method in inverse acoustic scattering. In: Boundary elements IX, Vol 3. Fluid Flow and Potential Applications (Brebbia, Wendland and Kuhn, eds). Springer, Berlin, 3–18 (1987).Google Scholar
  58. 254.
    Kleinman, R., and van den Berg, P.: A modified gradient method for two dimensional problems in tomography. J. Comp. Appl. Math. 42, 17–35 (1992).CrossRefMathSciNetzbMATHGoogle Scholar
  59. 255.
    Kleinman, R., and van den Berg, P.: An extended range modified gradient technique for profile inversion. Radio Science 28, 877–884 (1993).CrossRefGoogle Scholar
  60. 256.
    Knauff, W., and Kress, R.: On the exterior boundary value problem for the time-harmonic Maxwell equations. J. Math. Anal. Appl. 72, 215–235 (1979).CrossRefMathSciNetzbMATHGoogle Scholar
  61. 260.
    Kress, R.: On the boundary operator in electromagnetic scattering. Proc. Royal Soc. Edinburgh 103A, 91–98 (1986).CrossRefMathSciNetzbMATHGoogle Scholar
  62. 266.
    Kress, R.: Integral equation methods in inverse acoustic and electromagnetic scattering. In: Boundary Integral Formulations for Inverse Analysis (Ingham and Wrobel, eds). Computational Mechanics Publications, Southampton, 67–92 (1997).Google Scholar
  63. 267.
    Kress, R.: Newton’s Method for inverse obstacle scattering meets the method of least squares. Inverse Problems 19, 91–104 (2003).CrossRefMathSciNetzbMATHGoogle Scholar
  64. 273.
    Kress, R., and Rundell, W.: A quasi-Newton method in inverse obstacle scattering. Inverse Problems 10, 1145–1157 (1994).CrossRefMathSciNetzbMATHGoogle Scholar
  65. 282.
    Kress, R., and Zinn, A.: On the numerical solution of the three dimensional inverse obstacle scattering problem. J. Comp. Appl. Math. 42, 49–61 (1992).CrossRefMathSciNetzbMATHGoogle Scholar
  66. 289.
    Langenberg, K.J.: Applied inverse problems for acoustic, electromagnetic and elastic wave scattering. In: Basic Methods of Tomography and Inverse Problems (Sabatier, ed). Adam Hilger, Bristol and Philadelphia, 127–467 (1987).Google Scholar
  67. 292.
    Lax, P.D., and Phillips, R.S.: Scattering Theory. Academic Press, New York 1967.zbMATHGoogle Scholar
  68. 296.
    Leis, R.: Zur Dirichletschen Randwertaufgabe des Aussenraums der Schwingungsgleichung. Math. Z. 90, 205–211 (1965).CrossRefMathSciNetzbMATHGoogle Scholar
  69. 297.
    Leis, R.: Initial Boundary Value Problems in Mathematical Physics. John Wiley, New York 1986.CrossRefzbMATHGoogle Scholar
  70. 312.
    Martin, P.: Multiple Scattering: Interaction of Time-harmonic Waves with N Obstacles. Cambridge University Press, Cambridge 2006.CrossRefzbMATHGoogle Scholar
  71. 316.
    Melrose, R.B.: Geometric Scattering Theory. Cambridge University Press, Cambridge 1995.zbMATHGoogle Scholar
  72. 318.
    Mönch, L.: A Newton method for solving the inverse scattering problem for a sound-hard obstacle. Inverse Problems 12, 309–323 (1996).CrossRefMathSciNetzbMATHGoogle Scholar
  73. 328.
    Müller, C.: Zur mathematischen Theorie elektromagnetischer Schwingungen. Abh. deutsch. Akad. Wiss. Berlin 3, 5–56 (1945/46).Google Scholar
  74. 330.
    Müller, C.: Randwertprobleme der Theorie elektromagnetischer Schwingungen. Math. Z. 56, 261–270 (1952).CrossRefMathSciNetzbMATHGoogle Scholar
  75. 332.
    Müller, C.: Foundations of the Mathematical Theory of Electromagnetic Waves. Springer, Berlin 1969.CrossRefzbMATHGoogle Scholar
  76. 333.
    Nachman, A.: Reconstructions from boundary measurements. Annals of Math. 128, 531–576 (1988).CrossRefMathSciNetzbMATHGoogle Scholar
  77. 334.
    Nakamura, G and Potthast, R.: Inverse Modeling. IOP Publishing, Bristol 2015.zbMATHGoogle Scholar
  78. 336.
    Natterer, F., and Wübbeling, F.: A propagation-backpropagation method for ultrasound tomography. Inverse Problems 11, 1225–1232 (1995).CrossRefMathSciNetzbMATHGoogle Scholar
  79. 337.
    Nédélec, J.C.; Acoustic and Electromagnetic Equations. Springer, Berlin 2001.CrossRefzbMATHGoogle Scholar
  80. 338.
    Newton, R.G.: Scattering Theory of Waves and Particles. Springer, Berlin 1982.CrossRefzbMATHGoogle Scholar
  81. 339.
    Newton, R.G.: Inverse Schrödinger Scattering in Three Dimensions. Springer, Berlin 1989.CrossRefzbMATHGoogle Scholar
  82. 340.
    Novikov, R.: Multidimensional inverse spectral problems for the equation − Δψ + (v(x) − E u(x)) ψ = 0. Translations in Func. Anal. and its Appl. 22, 263–272 (1988).CrossRefMathSciNetGoogle Scholar
  83. 341.
    Ola, P., Päivärinta, L., and Somersalo, E.: An inverse boundary value problem in electrodynamics. Duke Math. Jour. 70, 617–653 (1993).CrossRefMathSciNetzbMATHGoogle Scholar
  84. 342.
    Ola, P., and Somersalo, E.: Electromagnetic inverse problems and generalized Sommerfeld potentials. SIAM J. Appl. Math. 56, 1129–1145 (1996).CrossRefMathSciNetzbMATHGoogle Scholar
  85. 345.
    Päivärinta, L., and Sylvester, J.: Transmission eigenvalues. SIAM J. Math. Anal. 40, 738–758 (2008).CrossRefMathSciNetzbMATHGoogle Scholar
  86. 346.
    Panich, O.I.: On the question of the solvability of the exterior boundary-value problems for the wave equation and Maxwell’s equations. Usp. Mat. Nauk 20A, 221–226 (1965) (in Russian).Google Scholar
  87. 353.
    Potthast, R.: Fréchet differentiability of boundary integral operators in inverse acoustic scattering. Inverse Problems 10, 431–447 (1994).CrossRefMathSciNetzbMATHGoogle Scholar
  88. 361.
    Potthast, R.: Point-Sources and Multipoles in Inverse Scattering Theory. Chapman & Hall, London 2001.CrossRefzbMATHGoogle Scholar
  89. 370.
    Ramm, A.G.: Recovery of the potential from fixed energy scattering data. Inverse Problems 4, 877–886 (1988).CrossRefMathSciNetzbMATHGoogle Scholar
  90. 371.
    Ramm, A.G.: Symmetry properties of scattering amplitudes and applications to inverse problems. J. Math. Anal. Appl. 156, 333–340 (1991).CrossRefMathSciNetzbMATHGoogle Scholar
  91. 373.
    Reed, M., and Simon, B.: Scattering Theory. Academic Press, New York 1979.zbMATHGoogle Scholar
  92. 374.
    Rellich, F.: Über das asymptotische Verhalten der Lösungen von Δu + λu = 0 in unendlichen Gebieten. Jber. Deutsch. Math. Verein. 53, 57–65 (1943).MathSciNetzbMATHGoogle Scholar
  93. 376.
    Rjasanow, S., and Steinbach, O.: The Fast Solution of Boundary Integral Equations. Springer, Berlin 2007.zbMATHGoogle Scholar
  94. 379.
    Roger, A.: Newton Kantorovich algorithm applied to an electromagnetic inverse problem. IEEE Trans. Ant. Prop. AP-29, 232–238 (1981).CrossRefzbMATHGoogle Scholar
  95. 392.
    Serranho, P.: A hybrid method for sound-soft obstacles in 3D. Inverse Problems and Imaging 1, 691–712 (2007).CrossRefMathSciNetzbMATHGoogle Scholar
  96. 397.
    Sommerfeld, A.: Die Greensche Funktion der Schwingungsgleichung. Jber. Deutsch. Math. Verein. 21, 309–353 (1912).zbMATHGoogle Scholar
  97. 405.
    Taylor, M.E.: Partial Differential Equations. 2nd ed, Springer, New York 2011.zbMATHGoogle Scholar
  98. 413.
    van den Berg, R. and Kleinman, R.: Gradient methods in inverse acoustic and electromagnetic scattering. In: Large-Scale Optimization with Applications, Part I: Optimization in Inverse Problems and Design (Biegler et al, eds). The IMA Volumes in Mathematics and its Applications 92, Springer, Berlin; 173–194 (1977).Google Scholar
  99. 414.
    Vekua, I.N.: Metaharmonic functions. Trudy Tbilisskogo matematichesgo Instituta 12, 105–174 (1943).MathSciNetzbMATHGoogle Scholar
  100. 417.
    Vögeler, M.: Reconstruction of the three-dimensional refractive index in electromagnetic scattering using a propagation-backpropagation method. Inverse Problems 19, 739–753 (2003).CrossRefMathSciNetzbMATHGoogle Scholar
  101. 422.
    Werner, P.: Randwertprobleme der mathematischen Akustik. Arch. Rational Mech. Anal. 10, 29–66 (1962).CrossRefMathSciNetzbMATHGoogle Scholar
  102. 425.
    Weston, V.H., and Boerner, W.M.: An inverse scattering technique for electromagnetic bistatic scattering. Canadian J. Physics 47, 1177–1184 (1969).CrossRefGoogle Scholar
  103. 426.
    Weyl, H.: Kapazität von Strahlungsfeldern. Math. Z. 55, 187–198 (1952).Google Scholar
  104. 430.
    Wilcox, C.H.: Scattering Theory for the d’Alembert Equation in Exterior Domains. Springer Lecture Notes in Mathematics 442, Berlin 1975.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • David Colton
    • 1
  • Rainer Kress
    • 2
  1. 1.Department of Mathematical SciencesUniversity of DelawareNewarkUSA
  2. 2.Institut für Numerische und Angewandte MathematikGeorg-August-Universität GöttingenGöttingenGermany

Personalised recommendations