Modelling Collaborative Knowledge Creation Processes: An Empirical Application to the Semiconductor Industry

  • Martina NeuländtnerEmail author
  • Manfred Paier
  • Astrid Unger
Part of the Springer Proceedings in Complexity book series (SPCOM)


Collaborative knowledge creation processes have received increasing attention in recent years, both in the scientific domain as well as in the policy realm. Collaborations in Research & Development (R&D) – in the literature often referred to as R&D networks – have become key for successfully generating new knowledge as a basis for innovation. Although a strong interconnectedness between national R&D actors supports the intra-regional knowledge diffusion, aiming for international embeddedness is an important pillar of policy and corporate strategies, since it allows firms to tap into different sources of knowledge. Hence, we propose an empirical agent-based simulation model of knowledge creation in a characteristic knowledge-driven industry, namely the semiconductor sector. With a special emphasis on collaborative knowledge creation, we investigate the effects of R&D networks on knowledge output, especially accounting for the role of international collaboration links.


Collaborative knowledge creation R&D networks Agent-based modelling Social network analysis Semiconductor industry 


  1. Ahrweiler, P., Pyka, A., & Gilbert, N. (2004). Simulating knowledge dynamics in innovation networks (SKIN). In Industry and labor dynamics: The agent-based computational economics approach world scientific (pp. 284–296). Singapore: World Scientific Pub. Co..CrossRefGoogle Scholar
  2. Ahuja, G. (2000). Collaboration networks, structural holes, and innovation: A longitudinal study. Administrative Science Quarterly, 45(3), 425–455.CrossRefGoogle Scholar
  3. Alkemade, F., & Castaldi, C. (2005). Strategies for the diffusion of innovations on social networks. Computational Economics, 25(1–2), 3–23.zbMATHCrossRefGoogle Scholar
  4. Arden, W., Brillouët, M., Cogez, P., Graef, M., Huizing, B., Mahnkopf, R., Pelka, J., Pfeiffer, J.-U., Rouzaud, A., Tartagni, M., Van Hoof, C., & Wagner, J. (2011). Towards a “More-than-Moore” roadmap. In Report from the CATRENE Scientific Committee. Paris, France: Cluster for Application and Technology Research in Europe on Nanoelectronics.Google Scholar
  5. Autant-Bernard, C., Mairesse, J., & Massard, N. (2007). Spatial knowledge diffusion through collaborative networks. Papers in Regional Science, 86(3), 341–350.CrossRefGoogle Scholar
  6. Bathelt, H., Malmberg, A., & Maskell, P. (2004). Clusters and knowledge: Local buzz, global pipelines and the process of knowledge creation. Progress in Human Geography, 28(1), 31–56.CrossRefGoogle Scholar
  7. Bathelt, H., & Taylor, M. (2002). Clusters, power and place: Inequality and local growth in time–space. Geografiska Annaler: Series B, Human Geography, 84(2), 93–109.CrossRefGoogle Scholar
  8. Belderbos, R., Carree, M., & Lokshin, B. (2004). Cooperative R&D and firm performance. Research Policy, 33(10), 1477–1492.CrossRefGoogle Scholar
  9. Belderbos, R., Carree, M., Lokshin, B., & Sastre, J. F. (2015). Inter-temporal patterns of R&D collaboration and innovative performance. The Journal of Technology Transfer, 40(1), 123–137.CrossRefGoogle Scholar
  10. Berger, T. (2001). Agent-based spatial models applied to agriculture: A simulation tool for technology diffusion, resource use changes and policy analysis. Agricultural Economics, 25(2–3), 245–260.CrossRefGoogle Scholar
  11. Boschma, R. A., & Ter Wal, A. L. (2007). Knowledge networks and innovative performance in an industrial district: The case of a footwear district in the south of Italy. Industry and Innovation, 14(2), 177–199.CrossRefGoogle Scholar
  12. Broekel, T., Brenner, T., & Buerger, M. (2015). An investigation of the relation between cooperation intensity and the innovative success of German regions. Spatial Economic Analysis, 10(1), 52–78.CrossRefGoogle Scholar
  13. Cameron, A. C., & Trivedi, P. K. (2013). Regression analysis of count data. Cambridge: Cambridge University Press.zbMATHCrossRefGoogle Scholar
  14. Capaldo, A. (2007). Network structure and innovation: The leveraging of a dual network as a distinctive relational capability. Strategic Management Journal, 28(6), 585–608.CrossRefGoogle Scholar
  15. Capaldo, A., & Messeni Petruzzelli, A. (2015). Origins of knowledge and innovation in R&D alliances: A contingency approach. Technology Analysis & Strategic Management, 27(4), 461–483.CrossRefGoogle Scholar
  16. Cohen, W. M., & Levinthal, D. A. (1990). Absorptive capacity: A new perspective on learning and innovation. Administrative Science Quarterly, 35, 128–152.CrossRefGoogle Scholar
  17. Cowan, R., & Jonard, N. (2003). The dynamics of collective invention. Journal of Economic Behavior & Organization, 52(4), 513–532.CrossRefGoogle Scholar
  18. Cowan, R., & Jonard, N. (2009). Knowledge portfolios and the organization of innovation networks. Academy of Management Review, 34(2), 320–342.Google Scholar
  19. Cowan, R., Jonard, N., & Zimmermann, J.-B. (2006). Evolving networks of inventors. Journal of Evolutionary Economics, 16(1–2), 155–174.zbMATHCrossRefGoogle Scholar
  20. Deroıan, F. (2002). Formation of social networks and diffusion of innovations. Research Policy, 31(5), 835–846.CrossRefGoogle Scholar
  21. European Commission. (2006a). Effects of ICT capital on economic growth. In Innovation policy – Technology for innovation, ICT industries and E-business. Brussels: European Commission.Google Scholar
  22. European Commission. (2006b). Effects of ICT production on aggregate labour productivity growth. In Innovation policy – Technology for innovation, ICT industries and E-business. Brussels: European Commission.Google Scholar
  23. Fischer, M. M., & Fröhlich, J. (2001). Knowledge, complexity and innovation systems: Prologue. In Knowledge, complexity and innovation systems (pp. 1–17). Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
  24. Gilbert, N., Pyka, A., & Ahrweiler, P. (2001). Innovation networks – A simulation approach. Journal of Artificial Societies and Social Simulation, 4(3), 1–13.zbMATHGoogle Scholar
  25. Gilsing, V., Nooteboom, B., Vanhaverbeke, W., Duysters, G., & van den Oord, A. (2008). Network embeddedness and the exploration of novel technologies: Technological distance, betweenness centrality and density. Research Policy, 37(10), 1717–1731.CrossRefGoogle Scholar
  26. Giuliani, E. (2007). The selective nature of knowledge networks in clusters: Evidence from the wine industry. Journal of Economic Geography, 7(2), 139–168.CrossRefGoogle Scholar
  27. Glückler, J. (2007). Economic geography and the evolution of networks. Journal of Economic Geography, 7(5), 619–634.CrossRefGoogle Scholar
  28. Gomes-Casseres, B., Hagedoorn, J., & Jaffe, A. B. (2006). Do alliances promote knowledge flows? Journal of Financial Economics, 80(1), 5–33.CrossRefGoogle Scholar
  29. Graf, H. (2011). Gatekeepers in regional networks of innovators. Cambridge Journal of Economics, 35(1), 173–198.CrossRefGoogle Scholar
  30. Hoekman, J., Frenken, K., & Tijssen, R. J. (2010). Research collaboration at a distance: Changing spatial patterns of scientific collaboration within Europe. Research Policy, 39(5), 662–673.CrossRefGoogle Scholar
  31. Inkpen, A. C., & Tsang, E. W. (2005). Social capital, networks, and knowledge transfer. Academy of Management Review, 30(1), 146–165.CrossRefGoogle Scholar
  32. Karlsson, C., & Gråsjö, U. (2014). Knowledge flows, knowledge externalities, and regional economic development. In M. M. Fischer & P. Nijkamp (Eds.), Handbook of regional science (pp. 413–437). Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
  33. Laursen, K., & Salter, A. (2004). Searching high and low: What types of firms use universities as a source of innovation? Research Policy, 33(8), 1201–1215.CrossRefGoogle Scholar
  34. LeBaron, B. (2001). Empirical regularities from interacting long-and short-memory investors in an agent-based stock market. IEEE Transactions on Evolutionary Computation, 5(5), 442–455.CrossRefGoogle Scholar
  35. Maggioni, M. A., & Uberti, T. E. (2009). Knowledge networks across Europe: Which distance matters? The Annals of Regional Science, 43(3), 691–720.CrossRefGoogle Scholar
  36. Maggioni, M. A., & Uberti, T. E. (2011). Networks and geography in the economics of knowledge flows. Quality & Quantity, 45(5), 1031–1051.CrossRefGoogle Scholar
  37. Mansfield, E. (1986). Patents and innovation: An empirical study. Management Science, 32(2), 173–181.CrossRefGoogle Scholar
  38. März, S., Friedrich-Nishio, M., & Grupp, H. (2006). Knowledge transfer in an innovation simulation model. Technological Forecasting and Social Change, 73(2), 138–152.CrossRefGoogle Scholar
  39. Molina-Morales, F. X., & Martínez-Fernández, M. T. (2010). Social networks: Effects of social capital on firm innovation. Journal of Small Business Management, 48(2), 258–279.CrossRefGoogle Scholar
  40. Mueller, M., Bogner, K., Buchmann, T., & Kudic, M. (2017). The effect of structural disparities on knowledge diffusion in networks: An agent-based simulation model. Journal of Economic Interaction and Coordination, 12(3), 613–634.CrossRefGoogle Scholar
  41. Negassi, S. (2004). R&D co-operation and innovation a microeconometric study on French firms. Research Policy, 33(3), 365–384.CrossRefGoogle Scholar
  42. Nikolic, I., Van Dam, K. H., & Kasmire, J. (2013). Practice. In K. H. Van Dam, I. Nikolic, & Z. Lukszo (Eds.), Agent-based modelling of socio-technical systems (Vol. 9, pp. 73–140). Dordrecht: Springer.CrossRefGoogle Scholar
  43. OECD. (2004). The economic impact of ICT – Measurement, evidence and implications (pp. 72–73). Paris: OECD.CrossRefGoogle Scholar
  44. Paier, M., Dünser, M., Scherngell, T., & Martin, S. (2017). Knowledge creation and research policy in science-based industries: An empirical agent-based model. In Innovation networks for regional development (pp. 153–183). Cham: Springer.CrossRefGoogle Scholar
  45. Paier, M., & Scherngell, T. (2011). Determinants of collaboration in European R&D networks: Empirical evidence from a discrete choice model. Industry and Innovation, 18(1), 89–104.CrossRefGoogle Scholar
  46. Powell, W. W., Koput, K. W., & Smith-Doerr, L. (1996). Interorganizational collaboration and the locus of innovation: Networks of learning in biotechnology. Administrative Science Quarterly, 41, 116–145.CrossRefGoogle Scholar
  47. Pyka, A., Gilbert, N., & Ahrweiler, P. (2002). Simulating innovation networks. In Innovation networks: Theory and practice (pp. 169–196). Cheltenham: Edward Elgar.zbMATHGoogle Scholar
  48. Romer, P. M. (1990). Endogenous technological change. Journal of Political Economy, 98(5, Part 2), S71–S102.CrossRefGoogle Scholar
  49. Rothaermel, F. T., & Alexandre, M. T. (2009). Ambidexterity in technology sourcing: The moderating role of absorptive capacity. Organization Science, 20(4), 759–780.CrossRefGoogle Scholar
  50. Salman, N., & Saives, A. L. (2005). Indirect networks: An intangible resource for biotechnology innovation. R&D Management, 35(2), 203–215.CrossRefGoogle Scholar
  51. Savin, I., & Egbetokun, A. (2016). Emergence of innovation networks from R&D cooperation with endogenous absorptive capacity. Journal of Economic Dynamics and Control, 64, 82–103.MathSciNetzbMATHCrossRefGoogle Scholar
  52. Scherngell, T. (2013). The geography of networks and R & D collaborations. Berlin, Heidelberg/New York: Springer.zbMATHCrossRefGoogle Scholar
  53. Schwarz, N., & Ernst, A. (2009). Agent-based modeling of the diffusion of environmental innovations—An empirical approach. Technological Forecasting and Social Change, 76(4), 497–511.CrossRefGoogle Scholar
  54. Singh, J. (2005). Collaborative networks as determinants of knowledge diffusion patterns. Management Science, 51(5), 756–770.ADSzbMATHCrossRefGoogle Scholar
  55. Smajgl, A., & Barreteau, O. (2014). Empirical agent-based modelling-challenges and solutions. New York: Springer.CrossRefGoogle Scholar
  56. Sofer, M., & Schnell, I. (2002). Over-and under-embeddedness; failures in developing mixed embeddedness among Israeli Arab entrepreneurs. In Embedded enterprise and social capital: International perspectives (pp. 207–224). Aldershot: Ashgate Publishing Limited.Google Scholar
  57. Ter Wal, A. L., & Boschma, R. A. (2009). Applying social network analysis in economic geography: Framing some key analytic issues. The Annals of Regional Science, 43(3), 739–756.CrossRefGoogle Scholar
  58. Thiele, J. C., Kurth, W., & Grimm, V. (2014). Facilitating parameter estimation and sensitivity analysis of agent-based models: A cookbook using NetLogo and R. Journal of Artificial Societies and Social Simulation, 17(3), 11.CrossRefGoogle Scholar
  59. Ting Helena Chiu, Y. (2008). How network competence and network location influence innovation performance. Journal of Business & Industrial Marketing, 24(1), 46–55.CrossRefGoogle Scholar
  60. Uzzi, B. (1997). Social structure and competition in interfirm networks: The paradox of embeddedness. Administrative Science Quarterly, 42, 35–67.CrossRefGoogle Scholar
  61. Vasudeva, G., Zaheer, A., & Hernandez, E. (2013). The embeddedness of networks: Institutions, structural holes, and innovativeness in the fuel cell industry. Organization Science, 24(3), 645–663.CrossRefGoogle Scholar
  62. Veugelers, R., & Cassiman, B. (2005). R&D cooperation between firms and universities. Some empirical evidence from Belgian manufacturing. International Journal of Industrial Organization, 23(5), 355–379.CrossRefGoogle Scholar
  63. Wajsman, N., Thumm, N., Kazimierczak, M., Lazaridis, G., Arias Burgos, C., Domanico, F., García Valero, F., Boedt, G., Garanasvili, A., & Mihailescu, A. (2013). Intellectual property rights intensive industries: Contribution to economic performance and employment in the European Union. In Industry-level analysis report. Munich /Alicante: European Patent Office and Office for Harmonization in the Internal Market.Google Scholar
  64. Wanzenböck, I., & Piribauer, P. (2016). R&D networks and regional knowledge production in Europe: Evidence from a space-time model. Papers in Regional Science., 97, S1–S24.CrossRefGoogle Scholar
  65. Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications. Cambridge: Cambridge University Press.zbMATHCrossRefGoogle Scholar
  66. Whittington, K. B., Owen-Smith, J., & Powell, W. W. (2009). Networks, propinquity, and innovation in knowledge-intensive industries. Administrative Science Quarterly, 54(1), 90–122.CrossRefGoogle Scholar
  67. Zaheer, A., & Bell, G. G. (2005). Benefiting from network position: Firm capabilities, structural holes, and performance. Strategic Management Journal, 26(9), 809–825.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Martina Neuländtner
    • 1
    Email author
  • Manfred Paier
    • 1
  • Astrid Unger
    • 1
  1. 1.AIT Austrian Institute of Technology, Center for Innovation Systems & PolicyViennaAustria

Personalised recommendations