Advertisement

Application of the Survival Analysis Methods in Contemporary Economics on the Example of Unemployment

  • Beata Bieszk-StolorzEmail author
Conference paper
Part of the Springer Proceedings in Business and Economics book series (SPBE)

Abstract

Contemporary economics uses newer and newer methods of data analysis. Survival analysis is one of such methods. It originated in the demography and reliability analysis. Duration of a phenomenon is observed until the moment of occurrence of specific event. It can be the duration of life, increase or decrease of share prices, debt payment, business life, unemployment. If the occurrence of the event does not take place in specific period, such observation is considered as censored. Survival function is the basic and primary one. It describes the probability of nonexistence of the event until the moment t. The second function is the hazard function that describes the intensity of occurrence of the event in the moment t. In the chapter, selected methods of the survival analysis will be applied for the analysis of duration of the registered unemployment with respect to the unemployed persons’ features. Among the other things, models of risk of the competing events will be analyzed. They allow to estimate the probability and intensity of accepting the job, removal from the register and de-registration due to other causes.

Keywords

Survival analysis Cumulative incidence function Lunn-McNeil model Unemployment 

References

  1. 1.
    Aalen, O., Borgan, O., Gjessing, H.: Survival and Event History Analysis. A Process Point of View. Springer, New York (2008).  https://doi.org/10.1007/978-0-387-68560-1CrossRefGoogle Scholar
  2. 2.
    Baumann, I.: Job search strategies and unemployment duration. In: The Plight of Older Workers. Life Course Research and Social Policies, vol. 5, pp. 91–107. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39754-2_5Google Scholar
  3. 3.
    Bieszk-Stolorz, B.: The impact of gender on routes for registered unemployment exit in Poland. Equilibrium. Q. J. Econ. Econ. Policy 12(4), 733–749 (2017).  https://doi.org/10.24136/eq.v12i4.38CrossRefGoogle Scholar
  4. 4.
    Bieszk-Stolorz, B.: Stratified cox model with interactions in analysis of recurrent events. Acta Universitatis Lodziensis. Folia Oeconomica 3(335), 207–2018 (2018).  https://doi.org/10.18778/0208-6018.335.14CrossRefGoogle Scholar
  5. 5.
    Bryant, J., Dignam, J.J.: Semiparametric models for cumulative incidence functions. Biometrics 60(1), 182–190 (2004).  https://doi.org/10.1111/j.0006-341X.2004.00149.xCrossRefGoogle Scholar
  6. 6.
    Carling, K., Jacobson, T.: Modeling unemployment duration in a dependent competing risks framework: identification and estimation. Lifetime Data Anal. 1, 111–122 (1995).  https://doi.org/10.1007/BF00985262CrossRefGoogle Scholar
  7. 7.
    Han, A., Hausman, J.A.: Flexible parametric estimation of duration and competing risk models. J. Appl. Econom. 5, 1–28 (1990).  https://doi.org/10.1002/jae.3950050102CrossRefGoogle Scholar
  8. 8.
    Kalbfleisch, J.D., Prentice, R.L.: The Statistical Analysis of Failure Time Data, 2nd edn. Wiley, Hoboken, New Jersey (2002)CrossRefGoogle Scholar
  9. 9.
    Kaplan, E.L., Meier, P.: Non-parametric estimation from incomplete observations. J. Am. Stat. Assoc. 53, 457–481 (1958)CrossRefGoogle Scholar
  10. 10.
    Klein, J.P., Bajorunaite, R.: Inference for competing risks. In: Balakrishnan, N., Rao, C.R. (eds.) Handbook of Statistics: Advances in Survival Analysis, vol. 23, pp. 291–312. Elsevier, Amsterdam (2004)CrossRefGoogle Scholar
  11. 11.
    Klein, J.P., Moeschberger, M.L.: Asymptotic bias of the product limit estimator under dependent competing risks. Indian J. Prod. Reliab. Qual. Control 9, 1–7 (1984)Google Scholar
  12. 12.
    Klein, J.P., Moeschberger, M.L.: Survival Analysis. Techniques for Censored and Truncated Data. Springer, New York (2003)Google Scholar
  13. 13.
    Kleinbaum, D., Klein, M.: Survival Analysis. A Self-Learning Text. Springer, New York (2005)Google Scholar
  14. 14.
    Landmesser, J.: Wykorzystanie metod analizy czasu trwania do badania aktywności ekonomicznej ludności w Polsce. Wydawnictwo SGGW, Warszawa (2013)Google Scholar
  15. 15.
    Markowicz, I.: Statystyczna analiza żywotności firm. Wydawnictwo Naukowe Uniwersytetu Szczecińskiego, Szczecin (2012)Google Scholar
  16. 16.
    Marubini, E., Valsecchi, M.: Analysing Survival Data from Clinical Trials and Observational Studies. Wiley, Chichester (1995)Google Scholar
  17. 17.
    Matuszyk, A.: Zastosowanie analizy przetrwania w ocenie ryzyka kredytowego klientów indywidualnych. CeDeWu, Warszawa (2015)Google Scholar
  18. 18.
    Meyer, B.D.: Unemployment insurance and unemployment spells. Econometrica 58(4), 757–782 (1990)CrossRefGoogle Scholar
  19. 19.
    Osińska, M., Śliwicki, D.: Models and forecasts of outflows from unemployment in the Kujawsko-Pomorskie voivodship. Torun Bus. Rev. 16(3), 5–19 (2017).  https://doi.org/10.19197/tbr.v16i3.134CrossRefGoogle Scholar
  20. 20.
    Pepe, M.S.: Inference for events with dependent risks in multiple endpoint studies. J. Am. Stat. Assoc. 86(415), 770–778 (1991).  https://doi.org/10.1080/01621459.1991.10475108CrossRefGoogle Scholar
  21. 21.
    Røed, K., Zhang, T.: Unemployment duration and economic incentives—a quasi random-assignment approach. Eur. Econ. Rev. 49, 1799–1825 (2005).  https://doi.org/10.1016/j.euroecorev.2004.04.001CrossRefGoogle Scholar
  22. 22.
    Sączewska-Piotrowska, A.: Dynamika ubóstwa w miejskich i wiejskich gospodarstwach domowych. Wiadomości Statystyczne 7, 39–59 (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Faculty of Economics and ManagementInstitute of Econometrics and Statistics, University of SzczecinSzczecinPoland

Personalised recommendations