Application of Reduced Graphene Oxide (rGO) for Stability of Perovskite Solar Cells

  • Bhim P. KafleEmail author
Part of the Carbon Nanostructures book series (CARBON)


Rapid increase in performance of methyl ammonium lead halide perovskite solar cells (PSCs) has been observed in the last decade, reaching overall power conversion efficiency up to 23%. This made them the serious alternative to the silicon-based solar cells. However, there are still several challenges to address before commercialization of this kind of solar cell technology. For example, PSCs showed very poor tolerance against moisture, oxygen, temperature, and UV illumination. The graphene and its derivatives [in particular, graphene oxide (GO) and reduced graphene oxide (rGO)] demonstrate several key features that may address above-underlined issues prevailing in PSCs and also in organic photovoltaic solar cells (OPVs), leading to enhance the energy conversion efficiency of these third-generation photovoltaic devices. In this context, this review highlighted on the key features of graphene, GO, and rGO and also provides overview of very latest successful examples of their applications as TCO, electron transport layer or hole transport layer mainly in PSCs. Finally, the potential issues and the perspective for future research in graphene-based materials for PSC applications are presented.


Graphene Reduced graphenen oxide Transparent conducting oxide Electron transparent conducting oxide Hole transport layer Perovskite solar cell 



Author would like to thank “The Word Academy of Science for developing countries (TWAS)” (Grant No. 12-165 RG/CHE/AS_I; UNESCO FR: 12-165 RG/CHE/AS_I/2013) and National Innovation Center (NIC), Kathmandu Nepal, for supporting this research project.


  1. 1.
    Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T.: J. Am. Chem. Soc. 131, 6050 (2009)CrossRefGoogle Scholar
  2. 2.
    Kim, H.S., Lee, C.R., Im, J.H., Lee, K.B., Moehl, T., Marchioro, A., Moon, S.J., Baker, R.H., Yum, J.H., Moser, J.E., Gratzel, M., Park, N.G.: Sci. Rep. 2, 591(1–7) (2012)Google Scholar
  3. 3.
    Lee, M.M., Teuscher, J., Miyasaka, T., Murakami, T.N., Snaith, H.J.: Science 338, 643 (2012)CrossRefGoogle Scholar
  4. 4.
    Gratzel, M.: Nat. Mater. 13, 838–842 (2014)CrossRefGoogle Scholar
  5. 5.
    Park, N.-G.: J. Phys. Chem. Lett. 4, 2423 (2013)CrossRefGoogle Scholar
  6. 6.
    Kim, H.-S., Lee, C.-R., Im, J.-H., Lee, K.-B., Moehl, T., Marchioro, A., Moon, S.-J., Humphry Baker, R., Yum, J.-H., Moser, J.E., et al.: Sci. Rep. 2, 591(2012)Google Scholar
  7. 7.
    Stranks, S.D., Eperon, G.E., Grancini, G., Menelaou, C., Alcocer, M.J.P., Leijtens, T., Herz, L.M., Petrozza, A., Snaith, H.J.: Science, 342, 341 (2013)Google Scholar
  8. 8.
    Jang, T.D.M., Park, K., Kim, D.H., Park, J., Shojaei, F., Kang, H.S., Ahn, J.-P., Lee, J.W., Song, J.K.: Nano Letters 15(8), 5191 (2015)CrossRefGoogle Scholar
  9. 9.
    Hutter, E.M., Gelvez-Rueda, M.C., Osherov, A., Bulovic, V., Grozema, F.C., Stranks, S.D., Savenije, T.J.: Nat. Mater. 16, 115–120 (2017)Google Scholar
  10. 10.
  11. 11.
    Palma, A.L., Cinà, L., Pescetelli, S., Agresti, A., Raggio, M., Paolesse, R., Bonaccorso, F., Carlo, A.D.: Nano Energy 22, 349 (2016)CrossRefGoogle Scholar
  12. 12.
    You, J., Meng, L., Song, T.-B., Guo, T.-F., Yang, Y.(M.),Chang, W.-H., Hong, Z., Chen, H., Zhou, H., Chen, Q., Liu, Y., Marco, N.D., Yang, Y.: Nat. Nanotechnol. 11, 75 (2016)Google Scholar
  13. 13.
    Yeo, J.-S., Kang, R., Lee, S., Jeon, Y.-J., Myoung, N., et al.: Nano Energy 12, 96–104 (2015)CrossRefGoogle Scholar
  14. 14.
    Agresti, A., Pescetelli, S., Cina, L., Konios, D., Kakavelakis, G., Kymakis, E., Carlo, A.D.: Adv. Funct. Mater. 26(16), 2686 (2016)Google Scholar
  15. 15.
    Sung, H., Ahn, N., Jang, M.S., Lee, J.-K., Yoon, H., Park, N.-G., Choi, M.: Adv. Energy Mater. 6(3), 1501873 (2016)CrossRefGoogle Scholar
  16. 16.
    Yang, Q.-D., Li, J., Cheng, Y., Li, H.-W., Guan, Z., Yu, B., Tsang, S.-W.: J. Mater. Chem. A 5, 9852 (2017)CrossRefGoogle Scholar
  17. 17.
    Luo, H., Lin, X., Hou, X., Pan, L., Huang, S., Chen, X.: Nano-Micro Lett. 9, 39 (2017)CrossRefGoogle Scholar
  18. 18.
    Gatti, T., Casaluci, S., Prato, M., Salerno, M., Di Stasio, F., Ansaldo, A., Menna, E., Carlo, A.D., Bonaccorso, F.: Adv. Funct. Mater. 26, 7443 (2016)CrossRefGoogle Scholar
  19. 19.
    Gatti, T., Lamberti, T., Topolovsek, P., Abdu-Aguye, M., Sorrentino, R., Perino, L., Salerno, M., Girardi, L., Marega, C., Rizzi, G.A., Loi, M.A., Petrozza, A., Menna, E.: Sol. RRL 1800013 (2018)Google Scholar
  20. 20.
    Lee, B.H., Lee, J.H., Kahng, Y.H., Kim, N., Kim, Y.J., Lee, J., Lee, T., Lee, K.: Adv. Funct. Mater. 24, 1847–1856 (2014)CrossRefGoogle Scholar
  21. 21.
    Ju, M.J., Jeon, I.Y., Kim, J.C., Lim, K., Choi, H.J., Jung, S.M., Choi, I.T., Eom, Y.K., Kwon, Y.J., Ko, J.: Adv. Mater. 26, 3055–3062 (2014)CrossRefGoogle Scholar
  22. 22.
    Liscio, A., Veronese, G.P., Treossi, E., Suriano, F., Rossella, F., Bellani, V., Rizzoli, R., Samori, P., Palermo, V.: J. Mater. Chem. 21, 2924 (2011)CrossRefGoogle Scholar
  23. 23.
    Cho, H.-W., Liao, W.-P., Lin, W.-H., Yoshimura, M., Wu, J.-J.: J. Power Sources 293, 246 (2015)CrossRefGoogle Scholar
  24. 24.
    Mahmoudi, T., Wang, Y., Hahn, Y.-B.: Nano Energy 47, 51–65 (2018)CrossRefGoogle Scholar
  25. 25.
    Bae, S., Kim, H., Lee, Y., Xu, X.F., Park, J.S., Zheng, Y., Balakrishnan, J., Lei, T., Kim, H.R., Song, Y.I., Kim, Y.J., Kim, K.S., Ozyilmaz, B., Ahn, J.H., Hong, B.H., Iijima, S.: Nat. Nanotechnol. 5, 574 (2010)CrossRefGoogle Scholar
  26. 26.
    Kobayashi, T., Bando, M., Kimura, N., Shimizu, K., Kadono, K., Umezu, N., Miyahara, K., Hayazaki, S., Nagai, S., Mizuguchi, Y., Murakami, Y., Hobara, D.: Appl. Phys. Lett. 102, 023112 (2013)CrossRefGoogle Scholar
  27. 27.
    Eda, G., Lin, Y.-Y., Miller, S., Chen, C.-W., Su, W-.F., Chhowalla, M.: Appl. Phys. Lett. 92, 233305 (2008)Google Scholar
  28. 28.
    Rafique, S., Abdullah, S.M., Shahid, M.M., Ansari, M.O., Sulaiman, K.: Nat.: Sci. Rep. 7, 39555 (2017)Google Scholar
  29. 29.
    Eda, G., Chhowalla, M.: Adv. Mater. 22, 2392 (2010)CrossRefGoogle Scholar
  30. 30.
    Loh, K.P., Bao, Q., Eda, G., Chhowalla, M.: Nat. Chem. 2, 1015 (2010)CrossRefGoogle Scholar
  31. 31.
    Hu, C., Liu, D., Xiao, Y., Dai, L.: Mater. Int. 28, 121 (2018)Google Scholar
  32. 32.
    Eda, G., Mattevi, C., Yamaguchi, H., Kim, H., Chhowalla, M.: J. Phys. Chem. C 113, 15768 (2009)CrossRefGoogle Scholar
  33. 33.
    S.-S. Li, K.-H. Tu, C.-C. Lin, C.-Wei, and M. Chhowalla, ACS NANO.4, 3169 (2010)Google Scholar
  34. 34.
    Wang, S., et al.: Nano Lett. 10, 92 (2010)CrossRefGoogle Scholar
  35. 35.
    Hummers, W.S., Offeman, R.E.: J. Am. Chem. Soc. 80(6), 1339 (1958)CrossRefGoogle Scholar
  36. 36.
    Hirata, M., Gotou, T., Horiuchi, S., Fujiwara, M., Ohba, M.: Carbon 42, 2929 (2004)Google Scholar
  37. 37.
    Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.T., Ruoff, R.S.: Carbon 45, 1558 (2007)CrossRefGoogle Scholar
  38. 38.
    Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R., Ruoff, R.S.: Adv. Mater. 22, 3906 (2010)CrossRefGoogle Scholar
  39. 39.
    Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., et al.: Nature 442(7100), 282 (2006)CrossRefGoogle Scholar
  40. 40.
    Savchak, M., Borodinov, N., et al.: ACS Appl. Mater. Interfaces. 10(4), 3975 (2018)CrossRefGoogle Scholar
  41. 41.
    Gao, X., Jang, J., Nagase, S.: J. Phys. Chem. C 114(2), 832 (2009)CrossRefGoogle Scholar
  42. 42.
    Williams, G., Seger, B., Kamat, P.V.: ACS Nano 2, 1487 (2008)CrossRefGoogle Scholar
  43. 43.
    Stankovich, S., Piner, R.D., Chen, X., Wu, N., Nguyen, S.T., Ruoff, R.S.: J. Mater. Chem. 16(2), 155 (2006)CrossRefGoogle Scholar
  44. 44.
    Songfeng, P., Zhao, J., Du, J., Ren, W., Cheng, H.-M.: Carbon 48, 4466 (2010)CrossRefGoogle Scholar
  45. 45.
    Ahammad, A.J.S., Islam, T., Hasan, MdM, Mozumder, M.N.I., Karim, R., Odhikari, N., Pal, P.R., Sarker, S., Kim, D.M.: J. Electrochem. Soc. 165(5), B174–B183 (2018)CrossRefGoogle Scholar
  46. 46.
    Lerf, A., He, H., Forster, M., Klinowski, J.: J Phys Chem B 102(23), 4477 (1998)CrossRefGoogle Scholar
  47. 47.
    Tuinstra, F., Koenig, J.L.: J. Chem. Phys. 53(3), 1126 (1970)CrossRefGoogle Scholar
  48. 48.
    Reserbat-Plantey, A., Marty, L., Arcizet, O., Bendiab, N., Bouchiat, V.: Nat. Nanotechnol. 7, 151 (2012)Google Scholar
  49. 49.
    Dresselhaus, M.S., Jorio, A., Saito, R.: Ann. Rev. Condens. Matter Phys. 1, 89 (2010)CrossRefGoogle Scholar
  50. 50.
    Eda, G., Fanchini, G., Chhowalla, M.: Nat. Nanotechnol. 3, 270 (2008)CrossRefGoogle Scholar
  51. 51.
    Ferrari, A.C.: Solid State Commun. 143, 47–57 (2007)CrossRefGoogle Scholar
  52. 52.
    Eda, G., Mattevi, C., Yamaguchi, H., Kim, H., Chhowalla, M.: J. Phys. Chem. C 113, 15768–15771 (2009)Google Scholar
  53. 53.
    Venezuela, P., Lazzeri, M., Mauri, F.: Phys. Rev. B 84, 035433 (2011)CrossRefGoogle Scholar
  54. 54.
    J.I. Paredes, S. Villar-Rodil, A. Martı´nez-Alonso, J.M.D. Tasco´n, Langmuir 24, 10560 (2008)Google Scholar
  55. 55.
    Kumar, N.A., Gambarelli, S., Duclairoir, F., Bidan, G., Dubois, L.: J. Mater. Chem. A 1, 2789 (2013)CrossRefGoogle Scholar
  56. 56.
    Islam, M.F., Rojas, E., Bergey, D.M., Yodh, A.J.: Nano Lett. 3, 269 (2003)CrossRefGoogle Scholar
  57. 57.
    T.A. Amollo, T.M. Genene, O. Nyamori Vincent, Solar Energy, 171, 83 (2018)Google Scholar
  58. 58.
    Robertson, J.: Mater. Sci. Eng. R 37, 129 (2002)CrossRefGoogle Scholar
  59. 59.
    Li, D., Müller, M.B., Gilje, S., Kaner, R.B., Wallace, G.G.; Nat. Nanotechnol. 3, 101 (2008)Google Scholar
  60. 60.
    O’Connel, M.J., et al.: Science 29, 7593 (2002)Google Scholar
  61. 61.
    Eda, G., Lin, G.Y.-Y., Miller, S., Mathevi, C., Yamaguchi, H., Chen, H.-A., Chen, I.S., Chen, C.-W., Chhowalla, M.: Adv. Mater. 21, 505 (2009)Google Scholar
  62. 62.
    Tiwari, S.K., Mishra, R.K., Ha, S.K., Huczko, A.: ChemNanoMat 4, 1 (2018)CrossRefGoogle Scholar
  63. 63.
    Iqbal, M.Z., Rehman, A.-U.: Solar Energy 169, 634 (2018)Google Scholar
  64. 64.
    Lim, E.L., Yap, C.C., Jumali, M.H.H., Teridi, M.A. M., Teh, C.H.: Nano-Micro Lett. 10 (2018)Google Scholar
  65. 65.
    You, P., Liu, Z., Tai, Q., Liu, S., Yan, F.: Adv. Mater. 27(24), 3632 (2015)CrossRefGoogle Scholar
  66. 66.
    Yoon, J., Sung, H., Lee, G., Cho, W., Ahn, N., Jung, H.S., Choi, M.: Energy Environ. Sci. 10(1), 337 (2017)CrossRefGoogle Scholar
  67. 67.
    Tavakoli, M.M., Tavakoli, R., Hasanzadeh, S., Mirfasih, M.H.: J. Phys. Chem. C 120, 19531 (2016)CrossRefGoogle Scholar
  68. 68.
    Zhu, Z., Ma, J., Wang, Z., Mu, C., Fan, Z., Du, L., Bai, Y., Fan, L., Yan, H., Phillips, D.L.: J. Am. Chem. Soc. 136, 3760 (2014)CrossRefGoogle Scholar
  69. 69.
    Wang, D.H., Kim, J.K., Seo, J.H., Park, I., Hong, B.H., Park, J.H., Heeger, A.J.: Angew. Chem. Int. Ed. 52, 2874 (2013)CrossRefGoogle Scholar
  70. 70.
    Xie, J., Huang, K., Yu, X., Yang, Z., Xiao, K., Qiang, Y., Zhu, X., Xu, L., Wang, P., Cui, C.: ACS Nano 11, 9176 (2017)CrossRefGoogle Scholar
  71. 71.
    Irwin, M.D., Buchholz, D.B., Hains, A.W., Chang, R.P., Marks, T.J.: Proc. Natl. Acad. Sci. (USA) 105, 2783 (2008)CrossRefGoogle Scholar
  72. 72.
    Shrotriya, V., Li, G., Yao, Y., Chu, C.-W., Yang, Y.: Appl. Phys. Lett. 88, 073508 (2006)CrossRefGoogle Scholar
  73. 73.
    Hou, Y., Geng, X., Li, Y., Dong, B., Liu, L., Sun, M.: Sci. China Phys. Mech. Astron. 54, 416 (2011)CrossRefGoogle Scholar
  74. 74.
    Yun, J.M., Yeo, J.S., Kim, J., Jeong, H.G., Kim, D.Y., Noh, Y.J., Kim, S.S., Ku, B.C., Na, S.I.: Adv. Mater. 23, 4923 (2011)CrossRefGoogle Scholar
  75. 75.
    Mahmoudi, T., Seo, S., Yang, H.-Y., Rho, W.-Y., Wang, Y., Hahn, Y.-B.: Nano Energy 28, 179 (2016)CrossRefGoogle Scholar
  76. 76.
    Steim, R., Kogler, F.R., Brabec, C.J.: J. Mater. Chem. 20, 2499 (2010)CrossRefGoogle Scholar
  77. 77.
    Yip, H.L., Hau, S.K., Baek, N.S., Ma, H., Jen, A.K.Y.: Adv. Mater. 20, 2376 (2008)CrossRefGoogle Scholar
  78. 78.
    Feng, S., Yang, Y., Li, M., Wang, J., Cheng, Z., Li, J., Ji, G., Yin, G., Song, F., Wang, Z.: ACS Appl. Mater. Interfaces. 8(23), 14503 (2016)CrossRefGoogle Scholar
  79. 79.
    Nouri, E., Mohammadi, M.R., Lianos, P.: Chem. Commun. 53, 1630 (2017)Google Scholar
  80. 80.
    Li, S.-S., Tu, K.-H., Lin, C.-C., Chen, C.-W., Chhowalla, M.: ACS Nano 4, 3169 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Chemical Science and Engineering, School of EngineeringKathmandu UniversityDhulikhelNepal

Personalised recommendations