Advertisement

Functionalization of Graphene—A Critical Overview of its Improved Physical, Chemical and Electrochemical Properties

  • Ramesh Kumar SinghEmail author
  • Naresh Nalajala
  • Tathagata Kar
  • Alex Schechter
Chapter
Part of the Carbon Nanostructures book series (CARBON)

Abstract

Graphene, the 2D allotrope of carbon, is reported to be functionalized with a plethora of organic and inorganic species. This functionalization imparts significant improvement in the physical, chemical and electrochemical properties of graphene. The covalent and non-covalent functionalization of graphene with electron-rich organic moieties and heteroatoms is focused on different sections of this chapter. The focus is laid on the improvement in physical, chemical and electrochemical properties of graphene achieved through this functionalization. The enhancement in electrocatalytic activity of non-metal-doped graphene towards the oxygen reduction reaction, methanol oxidation reaction and photocatalysis is covered. Towards the end, the potential uses of functionalized graphene for selected applications like biosensors, fuel cells and dye-sensitized solar cells are also discussed.

Keywords

Graphene Functionalization Doping Electrochemistry Applications 

References

  1. 1.
    Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183 (2007)Google Scholar
  2. 2.
    Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306(5596), 666 LP–669 LP (2004). https://doi.org/10.1126/science.1102896
  3. 3.
    Kuila, T., Bose, S., Mishra, A.K., Khanra, P., Kim, N.H., Lee, J.H.: Chemical functionalization of graphene and its applications. Prog. Mater Sci. 57(7), 1061–1105 (2012). https://doi.org/10.1016/j.pmatsci.2012.03.002
  4. 4.
    Stoller, M.D., Park, S., Zhu, Y., An, J., Ruoff, R.S.: Graphene-based ultracapacitors. Nano Lett. 8(10), 3498–3502 (2008). https://doi.org/10.1021/nl802558y
  5. 5.
    Qu, L., Liu, Y., Baek, J.-B., Dai, L.: Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4(3), 1321–1326 (2010). https://doi.org/10.1021/nn901850u
  6. 6.
    Wang, H., Hao, Q., Yang, X., Lu, L., Wang, X.: Graphene oxide doped polyaniline for supercapacitors. Electrochem. commun. 11(6), 1158–1161 (2009). https://doi.org/10.1016/j.elecom.2009.03.036
  7. 7.
    Yoo, E., Kim, J., Hosono, E., Zhou, H., Kudo, T., Honma, I.: Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 8(8), 2277–2282 (2008). https://doi.org/10.1021/nl800957b
  8. 8.
    Lian, P., Zhu, X., Liang, S., Li, Z., Yang, W., Wang, H.: Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries. Electrochim. Acta 55(12), 3909–3914 (2010). https://doi.org/10.1016/j.electacta.2010.02.025
  9. 9.
    Paek, S.-M., Yoo, E., Honma, I.: Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Lett. 9(1), 72–75 (2009). https://doi.org/10.1021/nl802484w
  10. 10.
    Guo, S., Sun, S.: Fept nanoparticles assembled on graphene as enhanced catalyst for oxygen reduction reaction. J. Am. Chem. Soc. 134(5), 2492–2495 (2012). https://doi.org/10.1021/ja2104334
  11. 11.
    Vivekchand, S.R.C., Rout, C.S., Subrahmanyam, K.S., Govindaraj, A., Rao, C.N.R.: Graphene-based electrochemical supercapacitors. J. Chem. Sci. 120(1), 9–13 (2008). https://doi.org/10.1007/s12039-008-0002-7
  12. 12.
    Liu, C., Yu, Z., Neff, D., Zhamu, A., Jang, B.Z.: Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett. 10(12), 4863–4868 (2010). https://doi.org/10.1021/nl102661q
  13. 13.
    Wang, Y., Shi, Z., Huang, Y.; Ma, Y., Wang, C., Chen, M., Chen, Y. : Supercapacitor devices based on graphene materials. J. Phys. Chem. C 113(30), 13103–13107 (2009). https://doi.org/10.1021/jp902214f
  14. 14.
    Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.T., Ruoff, R.S.: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 1558–1565 (2007). https://doi.org/10.1016/j.carbon.2007.02.034
  15. 15.
    Marcano, D.C., Kosynkin, D.V, Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L.B., Lu, W., Tour, J.M.: Improved synthesis of graphene oxide. ACS Nano 4(8), 4806–4814 (2010). https://doi.org/10.1021/nn1006368
  16. 16.
    Xu, Y., Sheng, K., Li, C., Shi, G.: Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4(7), 4324–4330 (2010). https://doi.org/10.1021/nn101187z
  17. 17.
    Muñoz, R., Gómez-Aleixandre, C.: Review of cvd synthesis of graphene. Chem. Vap. Depos. 19(10–12), 297–322 (2013). https://doi.org/10.1002/cvde.201300051
  18. 18.
    Guermoune, A., Chari, T., Popescu, F., Sabri, S.S., Guillemette, J., Skulason, H.S., Szkopek, T.: Chemical vapor deposition synthesis of graphene on copper with methanol, ethanol, and propanol precursors. Carbon N. Y. 49(13), 4204–4210 (2011). https://doi.org/10.1016/j.carbon.2011.05.054
  19. 19.
    Yang, W., Chen, G., Shi, Z., Liu, C.C., Zhang, L., Xie, G., Cheng, M., Wang, D., Yang, R., Shi, D., et al.: Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater. 12(9), 792–797 (2013). https://doi.org/10.1038/nmat3695
  20. 20.
    Sinitskii, A., Dimiev, A., Corley, D.A., Fursina, A.A., Kosynkin, D.V, Tour, J.M.: Kinetics of diazonium functionalization of chemically converted graphene nanoribbons. ACS Nano 4(4), 1949–1954 (2010). https://doi.org/10.1021/nn901899j
  21. 21.
    Strom, T.A., Dillon, E.P., Hamilton, C.E., Barron, A.R.: Nitrene addition to exfoliated graphene: a one-step route to highly functionalized graphene. Chem. Commun. 46(23), 4097–4099 (2010). https://doi.org/10.1039/C001488E
  22. 22.
    An, X., Butler, T.W., Washington, M., Nayak, S.K., Kar, S.: Optical and sensing properties of 1-pyrenecarboxylic acid-functionalized graphene films laminated on polydimethylsiloxane membranes. ACS Nano 5(2), 1003–1011 (2011). https://doi.org/10.1021/nn102415c
  23. 23.
    Imran Jafri, R., Rajalakshmi, N., Ramaprabhu, S.: Nitrogen doped graphene nanoplatelets as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell. J. Mater. Chem. 20(34), 7114–7117 (2010). https://doi.org/10.1039/C0JM00467G
  24. 24.
    Fang, M., Wang, K., Lu, H., Yang, Y., Nutt, S.: Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. J. Mater. Chem. 19(38), 7098–7105 (2009). https://doi.org/10.1039/B908220D
  25. 25.
    Bai, H., Xu, Y., Zhao, L., Li, C., Shi, G.: Non-covalent functionalization of graphene sheets by sulfonated polyaniline. Chem. Commun. (13), 1667–1669 (2009). https://doi.org/10.1039/B821805F
  26. 26.
    Liu, J., Li, Y., Li, Y., Li, J., Deng, Z.: Noncovalent DNA decorations of graphene oxide and reduced graphene oxide toward water-soluble metal–carbon hybrid nanostructures via self-assembly. J. Mater. Chem. 20(5), 900–906 (2010). https://doi.org/10.1039/B917752C
  27. 27.
    Georgakilas, V., Tiwari, J.N., Kemp, K.C., Perman, J.A., Bourlinos, A.B., Kim, K.S., Zboril, R.: Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem. Rev. 116(9), 5464–5519 (2016). https://doi.org/10.1021/acs.chemrev.5b00620CrossRefGoogle Scholar
  28. 28.
    Toh, R.J., Poh, H.L., Sofer, Z., Pumera, M.: Transition metal (Mn, Fe, Co, Ni)-doped graphene hybrids for electrocatalysis. Chem. Asian J. 8(6), 1295–1300 (2013). https://doi.org/10.1002/asia.201300068
  29. 29.
    Li, J., Zhang, Y., Zhang, X., Han, J., Wang, Y., Gu, L., Zhang, Z., Wang, X., Jian, J., Xu, P., et al.: Direct transformation from graphitic C3N4 to nitrogen-doped graphene: an efficient metal-free electrocatalyst for oxygen reduction reaction. ACS Appl. Mater. Interfaces 7(35), 19626–19634 (2015). https://doi.org/10.1021/acsami.5b03845CrossRefGoogle Scholar
  30. 30.
    Palaniselvam, T., Valappil, M.O., Illathvalappil, R., Kurungot, S.: Nanoporous graphene by quantum dots removal from graphene and its conversion to a potential oxygen reduction electrocatalyst via nitrogen doping. Energy Environ. Sci. 7(3), 1059–1067 (2014). https://doi.org/10.1039/C3EE43648ACrossRefGoogle Scholar
  31. 31.
    Klingele, M., Pham, C., Vuyyuru, K. R., Britton, B., Holdcroft, S., Fischer, A., Thiele, S.: Sulfur doped reduced graphene oxide as metal-free catalyst for the oxygen reduction reaction in anion and proton exchange fuel cells. Electrochem. Commun. 77, 71–75 (2017). https://doi.org/10.1016/j.elecom.2017.02.015CrossRefGoogle Scholar
  32. 32.
    Zheng, Y., Jiao, Y., Ge, L., Jaroniec, M., Qiao, S.Z.: Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis. Angew. Chem. Int. Ed. 125(11), 3192–3198 (2013). https://doi.org/10.1002/ange.201209548
  33. 33.
    Sheng, Z.-H., Gao, H.-L., Bao, W.-J., Wang, F.-B., Xia, X.-H.: Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells. J. Mater. Chem. 22(2), 390–395 (2012). https://doi.org/10.1039/C1JM14694GCrossRefGoogle Scholar
  34. 34.
    Li, J., Li, X., Xiong, D., Hao, Y., Kou, H., Liu, W., Li, D., Niu, Z.: Novel iodine-doped reduced graphene oxide anode for sodium ion batteries. RSC Adv. 7(87), 55060–55066 (2017). https://doi.org/10.1039/c7ra09349gCrossRefGoogle Scholar
  35. 35.
    Zhan, Y., Huang, J., Lin, Z., Yu, X., Zeng, D., Zhang, X., Xie, F., Zhang, W., Chen, J., Meng, H.: Iodine/Nitrogen co-doped graphene as metal free catalyst for oxygen reduction reaction. Carbon N. Y. 95, 930–939 (2015). https://doi.org/10.1016/j.carbon.2015.09.024
  36. 36.
    Huang, H., Ming, K., Fang, Y., Zhao, H., Wang, X., Chen, J., Guo, J., Zhang, J.: Fluorine-doped graphene with an outstanding electrocatalytic performance for efficient oxygen reduction reaction in alkaline solution. R. Soc. Open Sci. 5(10), 180925 (2018). https://doi.org/10.1098/rsos.180925CrossRefGoogle Scholar
  37. 37.
    Ion-Ebrasu, D., Varlam, M., Balan, D., Enachescu, M., Raceanu, M., Carcadea, E., Marinoiu, A., Stefanescu, I.: Iodine-doped graphene for enhanced electrocatalytic oxygen reduction reaction in proton exchange membrane fuel cell applications. J. Electrochem. Energy Convers. Storage 14(3), 031001 (2017). https://doi.org/10.1115/1.4036684CrossRefGoogle Scholar
  38. 38.
    Park, M., Jeon, I.Y., Ryu, J., Jang, H., Back, J.B., Cho, J.: Edge-halogenated graphene nanoplatelets with F, Cl, or Br as electrocatalysts for all-vanadium redox flow batteries. Nano Energy 26, 233–240 (2016). https://doi.org/10.1016/j.nanoen.2016.05.027CrossRefGoogle Scholar
  39. 39.
    Gao, L., Yue, W., Tao, S., Fan, L.: Novel strategy for preparation of graphene-pd, pt composite, and its enhanced electrocatalytic activity for alcohol oxidation. Langmuir 29(3), 957–964 (2013). https://doi.org/10.1021/la303663xCrossRefGoogle Scholar
  40. 40.
    Awasthi, R., Singh, R.N.: Graphene-supported Pd–Ru nanoparticles with superior methanol electrooxidation activity. Carbon N. Y. 51, 282–289 (2013). https://doi.org/10.1016/j.carbon.2012.08.055CrossRefGoogle Scholar
  41. 41.
    Wang, Y., Liu, H., Wang, L., Wang, H., Du, X., Wang, F., Qi, T., Lee, J.-M., Wang, X.: Pd catalyst supported on a chitosan-functionalized large-area 3d reduced graphene oxide for formic acid electrooxidation reaction. J. Mater. Chem. A1(23), 6839–6848 (2013). https://doi.org/10.1039/C3TA10214ACrossRefGoogle Scholar
  42. 42.
    Jeon, I.Y., Choi, H.J., Choi, M., Seo, J.M., Jung, S.M., Kim, M.J., Zhang, S., Zhang, L., Xia, Z., Dai, L., et al.: Facile, scalable synthesis of edge-halogenated graphene nanoplatelets as efficient metal-free eletrocatalysts for oxygen reduction reaction. Sci. Rep. 3, 1–7 (2013). https://doi.org/10.1038/srep01810Google Scholar
  43. 43.
    Niyogi, S., Bekyarova, E., Itkis, M.E., Zhang, H., Shepperd, K., Hicks, J., Sprinkle, M., Berger, C., Lau, C.N., deHeer, W.A., et al.: Spectroscopy of covalently functionalized graphene. Nano Lett. 10(10), 4061–4066 (2010). https://doi.org/10.1021/nl1021128CrossRefGoogle Scholar
  44. 44.
    Liu, H., Ryu, S., Chen, Z., Steigerwald, M.L., Nuckolls, C., Brus, L.E.: Photochemical reactivity of graphene. J. Am. Chem. Soc. 131(47), 17099–17101 (2009). https://doi.org/10.1021/ja9043906CrossRefGoogle Scholar
  45. 45.
    Georgakilas, V., Bourlinos, A.B., Zboril, R., Steriotis, T.A., Dallas, P., Stubos, A.K., Trapalis, C.: Organic functionalisation of graphenes. Chem. Commun. 46(10), 1766–1768 (2010). https://doi.org/10.1039/B922081JCrossRefGoogle Scholar
  46. 46.
    Zhang, X., Hou, L., Cnossen, A., Coleman, A.C., Ivashenko, O., Rudolf, P., van Wees, B.J., Browne, W.R., Feringa, B.L.: One-pot functionalization of graphene with porphyrin through cycloaddition reactions. Chem. Eur. J. 17(32), 8957–8964 (2011). https://doi.org/10.1002/chem.201100980
  47. 47.
    Liu, L.-H., Lerner, M.M., Yan, M.: Derivitization of pristine graphene with well-defined chemical functionalities. Nano Lett. 10(9), 3754–3756 (2010). https://doi.org/10.1021/nl1024744CrossRefGoogle Scholar
  48. 48.
    Vadukumpully, S., Gupta, J., Zhang, Y., Xu, G.Q., Valiyaveettil, S.: Functionalization of surfactant wrapped graphene nanosheets with alkylazides for enhanced dispersibility. Nanoscale 3(1), 303–308 (2011). https://doi.org/10.1039/C0NR00547A
  49. 49.
    Zhong, X., Jin, J., Li, S., Niu, Z., Hu, W., Li, R., Ma, J.: Aryne cycloaddition: highly efficient chemical modification of graphene. Chem. Commun. 46(39), 7340–7342 (2010). https://doi.org/10.1039/C0CC02389BCrossRefGoogle Scholar
  50. 50.
    Riley, K.E., Pitoňák, M., Jurečka, P., Hobza, P.: Stabilization and structure calculations for noncovalent interactions in extended molecular systems based on wave function and density functional theories. Chem. Rev. 110(9), 5023–5063 (2010). https://doi.org/10.1021/cr1000173
  51. 51.
    Xu, Y., Bai, H., Lu, G., Li, C., Shi, G.: Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J. Am. Chem. Soc. 130(18), 5856–5857 (2008). https://doi.org/10.1021/ja800745y
  52. 52.
    Wang, Y., Chen, X., Zhong, Y., Zhu, F., Loh, K.P.: Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices. Appl. Phys. Lett. 95(6), 1–4 (2009). https://doi.org/10.1063/1.3204698
  53. 53.
    Zhang, K., Zhang, L.L., Zhao, X.S., Wu, J.: Graphene/Polyaniline nanofiber composites as supercapacitor electrodes. Chem. Mater. 22(4), 1392–1401 (2010). https://doi.org/10.1021/cm902876u
  54. 54.
    Yang, Q., Pan, X., Huang, F., Li, K.: Fabrication of high-concentration and stable aqueous suspensions of graphene nanosheets by noncovalent functionalization with lignin and cellulose derivatives. J. Phys. Chem. C 114(9), 3811–3816 (2010). https://doi.org/10.1021/jp910232x
  55. 55.
    Kodali, V.K., Scrimgeour, J., Kim, S., Hankinson, J.H., Carroll, K.M., de Heer, W.A., Berger, C., Curtis, J.E.: Nonperturbative chemical modification of graphene for protein micropatterning. Langmuir 27(3), 863–865 (2011). https://doi.org/10.1021/la1033178
  56. 56.
    Su, Q., Pang, S., Alijani, V., Li, C., Feng, X., Müllen, K.: Composites of graphene with large aromatic molecules. Adv. Mater. 21(31), 3191–3195 (2009). https://doi.org/10.1002/adma.200803808
  57. 57.
    Georgakilas, V., Otyepka, M., Bourlinos, A.B., Chandra, V., Kim, N., Kemp, K.C., Hobza, P., Zboril, R., Kim, K.S.: Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 112(11), 6156–6214 (2012). https://doi.org/10.1021/cr3000412
  58. 58.
    Elias, D.C., Nair, R.R., Mohiuddin, T.M.G., Morozov, S.V., Blake, P., Halsall, M.P., Ferrari, A.C., Boukhvalov, D.W., Katsnelson, M.I., Geim, A.K., et al.: Control of graphene's properties by reversible hydrogenation: evidence for graphane. Science (80-) 323(5914), 610 LP–613 LP (2009). https://doi.org/10.1126/science.1167130
  59. 59.
    Schniepp, H.C., Li, J.L., McAllister, M.J., Sai, H., Herrera-Alonson, M., Adamson, D.H., Prud’homme, R.K., Car, R., Seville, D.A., Aksay, I.A.: Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 110(17), 8535–8539 (2006). https://doi.org/10.1021/jp060936f
  60. 60.
    Lee, J.K., Yamazaki, S., Yun, H., Park, J., Kennedy, G.P., Kim, G.T., Pietzsch, O., Wiesendanger, R., Lee, S., Hong, S., et al.: Modification of electrical properties of graphene by substrate-induced nanomodulation. Nano Lett. 13(8), 3494–3500 (2013). https://doi.org/10.1021/nl400827p
  61. 61.
    Schiros, T., Nordlund, D., Pálová, L., Prezzi, D., Zhao, L., Kim, K. S., Wurstbauer, U., Gutiérrez, C., Delongchamp, D., Jaye, C., et al.: Connecting dopant bond type with electronic structure in N-doped graphene. Nano Lett. 12(8), 4025–4031 (2012). https://doi.org/10.1021/nl301409h
  62. 62.
    Macedo, L.J.A., Lima, F.C.D.A., Amorim, R.G., Freitas, R.O., Yadav, A., Iost, R.M., Balasubramanian, K., Crespilho, F.N.: Interplay of non-uniform charge distribution on the electrochemical modification of graphene. Nanoscale 10(31), 15048–15057 (2018). https://doi.org/10.1039/c8nr03893g
  63. 63.
    Cervantes-Sodi, F., Csányi, G., Piscanec, S., Ferrari, A.C.: Electronic properties of chemically modified graphene ribbons. Phys. Status Solidi Basic Res. 245(10), 2068–2071 (2008). https://doi.org/10.1002/pssb.200879640
  64. 64.
    de la Torre, B., Švec, M., Hapala, P., Redondo, J., Krejčí, O., Lo, R., Manna, D., Sarmah, A., Nachtigallová, D., Tuček, J., et al.: Non-covalent control of spin-state in metal-organic complex by positioning on N-doped graphene. Nat. Commun. 9(1), 1–9 (2018). https://doi.org/10.1038/s41467-018-05163-y
  65. 65.
    Saha, S., Samanta, P., Chandra Murmu, N., Kuila, T.: Investigation of the surface plasmon polariton and electrochemical properties of covalent and non-covalent functionalized reduced graphene oxide. Phys. Chem. Chem. Phys. 19(42), 28588–28595 (2017). https://doi.org/10.1039/c7cp05923j
  66. 66.
    Zhou, J., Wu, M.M., Zhou, X., Sun, Q.: Tuning electronic and magnetic properties of graphene by surface modification. Appl. Phys. Lett. 95(10) (2009). https://doi.org/10.1063/1.3225154
  67. 67.
    Dedkov, Y.S., Fonin, M.: Electronic and magnetic properties of the graphene-ferromagnet interface. New J. Phys. 12, 125004 (2010). https://doi.org/10.1088/1367-2630/12/12/125004
  68. 68.
    Johari, P., Shenoy, V.B.: Modulating optical properties of graphene oxide: role of prominent functional groups. ACS Nano 5(9), 7640–7647 (2011). https://doi.org/10.1021/nn202732t
  69. 69.
    Xu, Y., Liu, Z., Zhang, X., Wang, Y., Tian, J., Huang, Y., Ma, Y., Zhang, X., Chen, Y.: A graphene hybrid material covalently functionalized with porphyrin: synthesis and optical limiting property. Adv. Mater. 21(12), 1275–1279 (2009). https://doi.org/10.1002/adma.200801617
  70. 70.
    Du, Y., Dong, N., Zhang, M., Zhu, K., Na, R., Zhang, S., Sun, N., Wang, G., Wang, J.: Covalent functionalization of graphene oxide with porphyrin and porphyrin incorporated polymers for optical limiting. Phys. Chem. Chem. Phys. 19(3), 2252–2260 (2017). https://doi.org/10.1039/c6cp05920a
  71. 71.
    Wang, A., Yu, W., Huang, Z., Zhou, F., Song, J., Song, Y., Long, L., Cifuentes, M.P., Humphrey, M.G., Zhang, L., et al.: Covalent functionalization of reduced graphene oxide with porphyrin by means of diazonium chemistry for nonlinear optical performance. Sci. Rep. 6, 1–12 (2016). https://doi.org/10.1038/srep23325
  72. 72.
    Li, Z., He, C., Wang, Z., Gao, Y., Dong, Y., Zhao, C., Chen, Z., Wu, Y., Song, W.: Ethylenediamine-modified graphene oxide covalently functionalized with a tetracarboxylic Zn(ii) phthalocyanine hybrid for enhanced nonlinear optical properties. Photochem. Photobiol. Sci. 15(7), 910–919 (2016). https://doi.org/10.1039/c6pp00063k
  73. 73.
    Zhao, X., Yan, X. Q., Ma, Q., Yao, J., Zhang, X. L., Liu, Z. B., Tian, J. G.: Nonlinear optical and optical limiting properties of graphene hybrids covalently functionalized by phthalocyanine. Chem. Phys. Lett. 577, 62–67 (2013). https://doi.org/10.1016/j.cplett.2013.04.023
  74. 74.
    Liu, Z., Xu, Y., Zhang, X., Zhang, X., Chen, Y., Tian, J.: Porphyrin and fullerene covalently functionalized graphene hybrid materials with large nonlinear optical properties. J. Phys. Chem. B (ACS Publ.) 9681–9686 (2009)Google Scholar
  75. 75.
    Xu, X., Li, P., Zhang, L., Liu, X., Zhang, H.L., Shi, Q., He, B., Zhang, W., Qu, Z., Liu, P.: Covalent functionalization of graphene by nucleophilic addition reaction: synthesis and optical-limiting properties. Chem. Asian J. 12(19), 2583–2590 (2017). https://doi.org/10.1002/asia.201700899
  76. 76.
    Orellana, W., Correa, J.D.: Noncovalent functionalization of carbon nanotubes and graphene with tetraphenylporphyrins: stability and optical properties from ab initio calculations. J. Mater. Sci. 50(2), 898–905 (2014). https://doi.org/10.1007/s10853-014-8650-0
  77. 77.
    Liu, W., Liu, J.Y., Miao, M.S.: Macrocycles inserted in graphene: from coordination chemistry on graphene to graphitic carbon oxide. Nanoscale 8(41), 17976–17983 (2016). https://doi.org/10.1039/c6nr04178g
  78. 78.
    Chowdhury, S., Jana, D.: Electronic and magnetic properties of modified silicene/graphene hybrid: ab initio study. Mater. Chem. Phys. 183, 580–587 (2016). https://doi.org/10.1016/j.matchemphys.2016.09.018
  79. 79.
    Ray, S.C., Soin, N., Pong, W. F., Roy, S.S., Strydom, A.M., McLaughlin, J.A., Papakonstantinou, P.: Plasma modification of the electronic and magnetic properties of vertically aligned Bi-/Tri-layered graphene nanoflakes. RSC Adv. 6(75), 70913–70924 (2016). https://doi.org/10.1039/c6ra14457h
  80. 80.
    Ray, S.C., Soin, N., Makgato, T., Chuang, C.H., Pong, W.F., Roy, S.S., Ghosh, S.K., Strydom, A.M., McLaughlin, J.A.: Graphene supported graphone/graphane bilayer nanostructure material for spintronics. Sci. Rep. 4 (2014). https://doi.org/10.1038/srep03862
  81. 81.
    Liu, Y., Tang, N., Wan, X., Feng, Q., Li, M., Xu, Q., Liu, F., Du, Y.: Realization of ferromagnetic graphene oxide with high magnetization by doping graphene oxide with nitrogen. Sci. Rep. 3 (2013). https://doi.org/10.1038/srep02566
  82. 82.
    Yazyev, O.V., Helm, L.: Defect-induced magnetism in graphene. Phys. Rev. B Condens. Matter Mater. Phys. 75(12), 1–5 (2007). https://doi.org/10.1103/PhysRevB.75.125408
  83. 83.
    Gonzalez-Herrero, H., Gomez-Rodriguez, J.M., Mallet, P., Moaied, M., Palacios, J.J., Salgado, C., Ugeda, M.M., Veuillen, J.-Y., Yndurain, F., Brihuega, I.: Supplementary materials for atomic-scale control of graphene magnetism by using hydrogen atoms. Science (80-) 352(6284), 437–441 (2016). https://doi.org/10.1126/science.aad8038
  84. 84.
    Park, R.S., Lee, S., Bozoklu, K.-S., Cai, G., Nguyen, W., Ruoff, S.T.: Graphene oxide papers. ACS Nano 2(3), 572–578 (2008). https://doi.org/10.1021/nn700349a
  85. 85.
    Gonalves, G., Marques, P.A.A.P., Barros-Timmons, A., Bdkin, I., Singh, M.K., Emami, N., Grácio, J.: Graphene oxide modified with pmma via atrp as a reinforcement filler. J. Mater. Chem. 20(44), 9927–9934 (2010). https://doi.org/10.1039/c0jm01674h
  86. 86.
    Song, S., Wan, C., Zhang, Y.: Non-covalent functionalization of Graphene oxide by Pyrene-block copolymers for enhancing physical properties of Poly(Methyl Methacrylate). RSC Adv. 5(97), 79947–79955 (2015). https://doi.org/10.1039/c5ra14967c
  87. 87.
    Dikin, D.A., Stankovich, S., Zimney, E.J., Piner, R.D., Dommett, G.H.B., Evmenenko, G., Nguyen, S.T., Ruoff, R.S.: Preparation and characterization of graphene oxide paper. Nature 448(7152), 457–460 (2007). https://doi.org/10.1038/nature06016
  88. 88.
    Suk, J. W., Piner, R. D., An, J., Ruoff, R. S.: Mechanical properties of monolayer graphene oxide. ACS Nano. 4, 6557−6564 (2010)Google Scholar
  89. 89.
    Wang, B., Li, Z., Wang, C., Signetti, S., Cunning, B.V., Wu, X., Huang, Y., Jiang, Y., Shi, H., Ryu, S., et al.: Folding large graphene-on-polymer films yields laminated composites with enhanced mechanical performance. Adv. Mater. 30(35), 1–10 (2018). https://doi.org/10.1002/adma.201707449
  90. 90.
    Tang, Y., Yang, Z., Dai, X.: A theoretical simulation on the catalytic oxidation of co on pt/graphene. Phys. Chem. Chem. Phys. 14(48), 16566–16572 (2012). https://doi.org/10.1039/c2cp41441d
  91. 91.
    Li, F., Zhao, J., Chen, Z.: Fe-anchored graphene oxide: a low-cost and easily accessible catalyst for low-temperature CO oxidation. J. Phys. Chem. C 116(3), 2507–2514 (2012). https://doi.org/10.1021/jp209572d
  92. 92.
    Guo, N., Xi, Y., Liu, S., Zhang, C.: Greatly enhancing catalytic activity of graphene by doping the underlying metal substrate. Sci. Rep. 5, 1–7 (2015). https://doi.org/10.1038/srep12058
  93. 93.
    Lu, Y.-H., Zhou, M., Zhang, C., Feng, Y.-P.: Metal-embedded graphene: a possible catalyst with high activity. J. Phys. Chem. C 113(47), 20156–20160 (2009). https://doi.org/10.1021/jp908829m
  94. 94.
    Zhou, M., Zhang, A., Dai, Z., Zhang, C., Feng, Y.P.: Greatly enhanced adsorption and catalytic activity of au and pt clusters on defective graphene. J. Chem. Phys. 132(19), 7–10 (2010). https://doi.org/10.1063/1.3427246
  95. 95.
    Wang, X., Song, L., Yang, H., Xing, W., Lu, H., Hu, Y.: Cobalt Oxide/Graphene composite for highly efficient CO oxidation and its application in reducing the fire hazards of aliphatic polyesters. J. Mater. Chem. 22(8), 3426–3431 (2012). https://doi.org/10.1039/c2jm15637g
  96. 96.
    Wang, Y., Wen, Z., Zhang, H., Cao, G., Sun, Q., Cao, J.: CuO Nanorods-decorated reduced graphene oxide nanocatalysts for catalytic oxidation of Co. Catalysts 6(12), 214 (2016). https://doi.org/10.3390/catal6120214
  97. 97.
    Li, W., Zhang, H., Wang, J., Qiao, W., Ling, L., Long, D.: Flexible Ru/Graphene aerogel with switchable surface chemistry: highly efficient catalyst for room-temperature CO oxidation. Adv. Mater. Interfaces 3(10), 1–8 (2016). https://doi.org/10.1002/admi.201500711
  98. 98.
    Mahmoudi, H., Mahmoudi, M., Doustdar, O., Jahangiri, H., Tsolakis, A., Gu, S., LechWyszynski, M.: A review of Fischer Tropsch synthesis process, mechanism, surface chemistry and catalyst formulation. Biofuels Eng. 2(1), 11–31 (2017). https://doi.org/10.1515/bfuel-2017-0002
  99. 99.
    Jahangiri, H., Bennett, J., Mahjoubi, P., Wilson, K., Gu, S.: A review of advanced catalyst development for fischer-tropsch synthesis of hydrocarbons from biomass derived syn-gas. Catal. Sci. Technol. 4(8), 2210–2229 (2014). https://doi.org/10.1039/c4cy00327f
  100. 100.
    Cheng, Y., Lin, J., Xu, K., Wang, H., Yao, X., Pei, Y., Yan, S., Qiao, M., Zong, B.: Fischer-tropsch synthesis to lower olefins over potassium-promoted reduced graphene oxide supported iron catalysts. ACS Catal. 6(1), 389–399 (2016). https://doi.org/10.1021/acscatal.5b02024
  101. 101.
    Zhao, H., Zhu, Q., Gao, Y., Zhai, P., Ma, D.: Iron oxide nanoparticles supported on pyrolytic graphene oxide as model catalysts for fischer tropsch synthesis. Appl. Catal. A Gen. 456, 233–239 (2013). https://doi.org/10.1016/j.apcata.2013.03.006
  102. 102.
    Abbas, M., Zhang, J., Lin, K., Chen, J.: Fe3O4 nanocubes assembled on RGO nanosheets: ultrasound induced in-situ and eco-friendly synthesis, characterization and their excellent catalytic performance for the production of liquid fuel in fischer-tropsch synthesis. Ultrason. Sonochem. 42, 271–282 (2018). https://doi.org/10.1016/j.ultsonch.2017.11.031
  103. 103.
    Sun, B., Jiang, Z., Fang, D., Xu, K., Pei, Y., Yan, S., Qiao, M., Fan, K., Zong, B.: One-pot approach to a highly robust iron oxide/reduced graphene oxide nanocatalyst for fischer-tropsch synthesis. ChemCatChem 5(3), 714–719 (2013). https://doi.org/10.1002/cctc.201200653
  104. 104.
    Taghavi, S., Asghari, A., Tavasoli, A.: Enhancement of performance and stability of graphene nano sheets supported cobalt catalyst in fischer–tropsch synthesis using graphene functionalization. Chem. Eng. Res. Des. 119, 198–208 (2017). https://doi.org/10.1016/j.cherd.2017.01.021
  105. 105.
    Hajjar, Z., Doroudian Rad, M., Soltanali, S.: Novel CO/Graphene oxide and CO/nanoporous graphene catalysts for fischer–tropsch reaction. Res. Chem. Intermed. 43(3), 1341–1353 (2017). https://doi.org/10.1007/s11164-016-2701-x
  106. 106.
    Yadav, M.D., Dasgupta, K., Kushwaha, A., Srivastava, A.P., Patwardhan, A.W., Srivastava, D., Joshi, J.B.: Few layered graphene by floating catalyst chemical vapour deposition and its extraordinary H2O2 sensing property. Mater. Lett. 199, 180–183 (2017). https://doi.org/10.1016/j.matlet.2017.04.085
  107. 107.
    Rostamnia, S., Doustkhah, E., Golchin-Hosseini, H., Zeynizadeh, B., Xin, H., Luque, R.: Efficient tandem aqueous room temperature oxidative amidations catalysed by supported Pd nanoparticles on graphene oxide. Catal. Sci. Technol. 6(12), 4124–4133 (2016). https://doi.org/10.1039/c5cy01596k
  108. 108.
    Rahimi, R., Moshari, M., Rabbani, M., Azad, A.: Photooxidation of benzyl alcohols and photodegradation of cationic dyes by Fe3O4@sulfur/reduced graphene oxide as catalyst. RSC Adv. 6(47), 41156–41164 (2016). https://doi.org/10.1039/c6ra00137h
  109. 109.
    Zahed, B., Hosseini-Monfared, H.: A comparative study of silver-graphene oxide nanocomposites as a recyclable catalyst for the aerobic oxidation of benzyl alcohol: support effect. Appl. Surf. Sci. 328, 536–547 (2015). https://doi.org/10.1016/j.apsusc.2014.12.078
  110. 110.
    Song, Z., Li, W., Niu, F., Xu, Y., Niu, L., Yang, W., Wang, Y., Liu, J.: A novel method to decorate au clusters onto graphene via a mild co-reduction process for ultrahigh catalytic activity. J. Mater. Chem. A 5(1), 230–239 (2017). https://doi.org/10.1039/c6ta08284j
  111. 111.
    Chung, H.T., Cullen, D. A., Higgins, D., Sneed, B.T., Holby, E.F. More, K.L., Zelenay, P.: Direct atomic-level insight into the active sites of a high-performance pgm-free ORR catalyst. Science (80-) 357(6350), 479–484 (2017). https://doi.org/10.1126/science.aan2255
  112. 112.
    Gasteiger, H.A., Markovi, N.M.: Chemistry: just a dream--or future reality? Science (80-) 324(5923), 48–49 (2009). https://doi.org/10.1126/science.1172083
  113. 113.
    Jaouen, F., Proietti, E., Lefèvre, M., Chenitz, R., Dodelet, J.-P., Wu, G., Chung, H.T., Johnston, C.M., Zelenay, P.: Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells. Energy Environ. Sci. 4(1), 114 (2011). https://doi.org/10.1039/c0ee00011f
  114. 114.
    Gasteiger, H.A., Kocha, S.S., Sompalli, B., Wagner, F.T.: Activity benchmarks and requirements for Pt, Pt-alloy, and Non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B Environ. 56(1-2 Special issue), 9–35 (2005). https://doi.org/10.1016/j.apcatb.2004.06.021
  115. 115.
    Wang, J.X., Inada, H.; Wu, L.; Zhu, Y.; Choi, Y.; Liu, P.; Zhou, W. P., Adzic, R.R.: Oxygen reduction on well-defined core-shell nanocatalysts: particle size, facet, and pt shell thickness effects. J. Am. Chem. Soc. 131(47), 17299–17302 (2009). https://doi.org/10.1021/ja9067645
  116. 116.
    Stamenkovic, V.R., Fowler, B., Mun, B.S., Wang, G., Ross, P.N., Lucas, C.A., Markovic, N.M.:Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science (80-) 315(5811), 493–497 (2007). https://doi.org/10.1126/science.1135941
  117. 117.
    Li, Y., Zhou, W., Wang, H., Xie, L., Liang, Y., Wei, F., Idrobo, J.C., Pennycook, S.J., Dai, H.: An oxygen reduction electrocatalyst based on carbon nanotubeĝ€ graphene complexes. Nat. Nanotechnol. 7(6), 394–400 (2012). https://doi.org/10.1038/nnano.2012.72
  118. 118.
    Greeley, J., Stephens, I.E.L., Bondarenko, A.S., Johansson, T.P., Hansen, H.A., Jaramillo, T.F., Rossmeisl, J., Chorkendorff, I., Nørskov, J.K.: Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 1(7), 552–556 (2009). https://doi.org/10.1038/nchem.367
  119. 119.
    Xu, M., Ivey, D.G., Xie, Z., Qu, W.: Rechargeable Zn-air batteries: progress in electrolyte development and cell configuration advancement. J. Power Sources 283, 358–371 (2015). https://doi.org/10.1016/j.jpowsour.2015.02.114
  120. 120.
    Blurton, K.F., Sammells, A.F.: Metal/air batteries: their status and potential - a review. J. Power Sources 4(4), 263–279 (1979). https://doi.org/10.1016/0378-7753(79)80001-4
  121. 121.
    Kraytsberg, A., Ein-Eli, Y.: Review on Li-air batteries - opportunities, limitations and perspective. J. Power Sources 196(3), 886–893 (2011). https://doi.org/10.1016/j.jpowsour.2010.09.031
  122. 122.
    Lee, J.S., Kim, S.T., Cao, R., Choi, N.S., Liu, M.; Lee, K.T., Cho, J.: Adv. Energy Mater. 1(1), 34–50 (2011). https://doi.org/10.1002/aenm.201000010
  123. 123.
    Gelman, D., Shvartsev, B., Ein-Eli, Y.: Aluminum-air battery based on an ionic liquid electrolyte. J. Mater. Chem. A 2(47), 20237–20242 (2014). https://doi.org/10.1002/aenm.201000010
  124. 124.
    Gong, K., Du, F., Xia, Z., Durstock, M., Dai, L.: Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science (80-) 323(5915), 760 LP–764 LP (2009). https://doi.org/10.1126/science.1168049
  125. 125.
    Liang, J., Jiao, Y., Jaroniec, M., Qiao, S.Z.: Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew. Chemie. Int. Ed. 51(46), 11496–11500 (2012). https://doi.org/10.1002/anie.201206720
  126. 126.
    Zhang, L., Xia, Z.: Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells. J. Phys. Chem. C 115(22), 11170–11176 (2011). https://doi.org/10.1021/jp201991j
  127. 127.
    Yang, Z., Yao, Z., Li, G., Fang, G., Nie, H., Liu, Z., Zhou, X., Chen, X., Huang, S.: Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS Nano 6(1), 205–211 (2012). https://doi.org/10.1021/nn203393d
  128. 128.
    Xiong, W., Du, F., Liu, Y., Perez, A., Supp, M., Ramakrishnan, T.S., Dai, L., Jiang, L.: 3-D carbon nanotube structures used as high performance catalyst for oxygen reduction reaction. J. Am. Chem. Soc. 132(45), 15839–15841 (2010). https://doi.org/10.1021/ja104425h
  129. 129.
    Wang, S., Yu, D., Dai, L.: Polyelectrolyte functionalized carbon nanotubes as efficient metal-free electrocatalysts for oxygen reduction. J. Am. Chem. Soc. 133(14), 5182–5185 (2011). https://doi.org/10.1021/ja1112904
  130. 130.
    Yu, D., Nagelli, E., Du, F., Dai, L.: Metal-free carbon nanomaterials become more active than metal catalysts and last longer. J. Phys. Chem. Lett. 1(14), 2165–2173 (2010). https://doi.org/10.1021/jz100533t
  131. 131.
    Subramanian, P., Cohen, A., Teblum, E., Nessim, G.D., Bormasheko, E., Schechter, A.: Electrocatalytic activity of nitrogen plasma treated vertically aligned carbon nanotube carpets towards oxygen reduction reaction. Electrochem. Commun. 49, 42–46 (2014). https://doi.org/10.1016/j.elecom.2014.10.005
  132. 132.
    Yan, X., Jia, Y., Yao, X.: Defects on carbons for electrocatalytic oxygen reduction. Chem. Soc. Rev. 47, 7628–7658 (2018). https://doi.org/10.1039/C7CS00690J
  133. 133.
    Jahan, M., Bao, Q., Loh, K.P.: Electrocatalytically active graphene-porphyrin MOF composite for oxygen reduction reaction. J. Am. Chem. Soc. 134(15), 6707–6713 (2012). https://doi.org/10.1021/ja211433h
  134. 134.
    Kolagatla, S., Subramanian, P., Schechter, A.: Nanoscale mapping of catalytic hotspots on Fe, N-Modified HOPG by scanning electrochemical microscopy-atomic force microscopy. Nanoscale 10(15), 6962–6970 (2018). https://doi.org/10.1039/C8NR00849C
  135. 135.
    Zhou, Y., Neyerlin, K., Olson, T.S., Pylypenko, S., Bult, J., Dinh, H.N., Gennett, T., Shao, Z., O’Hayre, R.: Enhancement of Pt and Pt-Alloy fuel cell catalyst activity and durability via nitrogen-modified carbon supports. Energy Environ. Sci. 3(10), 1437–1446 (2010). https://doi.org/10.1039/C003710A
  136. 136.
    Wood, K.N., O’Hayre, R., Pylypenko, S.: Recent progress on nitrogen/carbon structures designed for use in energy and sustainability applications. Energy Environ. Sci. 7(4), 1212–1249 (2014). https://doi.org/10.1039/C3EE44078H
  137. 137.
    Bera, B., Chakraborty, A., Kar, T., Leuaa, P., Neergat, M.: Density of states, carrier concentration, and flat band potential derived from electrochemical impedance measurements of N-Doped carbon and their influence on electrocatalysis of oxygen reduction reaction. J. Phys. Chem. C 121(38), 20850–20856 (2017). https://doi.org/10.1021/acs.jpcc.7b06735
  138. 138.
    Li, Y., Wang, H., Xie, L., Liang, Y., Hong, G., Dai, H.: MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133(19), 7296–7299 (2011). https://doi.org/10.1021/ja201269b
  139. 139.
    Liang, Y., Wang, H., Casalongue, H.S., Chen, Z., Dai, H.: TiO2 Nanocrystals grown on graphene as advanced photocatalytic hybrid materials. Nano Res. 3(10), 701–705 (2010). https://doi.org/10.1007/s12274-010-0033-5
  140. 140.
    Zhang, H., Lv, X., Li, Y., Wang, Y., Li, J.: P25-graphene composite as a high performance photocatalyst. ACS Nano 4(1), 380–386 (2010). https://doi.org/10.1021/nn901221k
  141. 141.
    Zhou, K., Zhu, Y., Yang, X., Jiang, X., Li, C.: Preparation of graphene-TiO2 composites with enhanced photocatalytic activity. New J. Chem. 35(2), 353–359 (2011). https://doi.org/10.1039/c0nj00623h
  142. 142.
    Gao, E., Wang, W., Shang, M., Xu, J.: Synthesis and enhanced photocatalytic performance of graphene-Bi 2WO6 composite. Phys. Chem. Chem. Phys. 13(7), 2887–2893 (2011). https://doi.org/10.1039/c0cp01749c
  143. 143.
    Xu, T., Zhang, L., Cheng, H., Zhu, Y.: Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study. Appl. Catal. B Environ. 101(3–4), 382–387 (2011). https://doi.org/10.1016/j.apcatb.2010.10.007
  144. 144.
    Li, Q., Guo, B., Yu, J., Ran, J., Zhang, B., Yan, H., Gong, J.R.: Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J. Am. Chem. Soc. 133(28), 10878–10884 (2011). https://doi.org/10.1021/ja2025454
  145. 145.
    Xiang, Q., Yu, J., Jaroniec, M.: Preparation and enhanced visible-light photocatalytic H2- production activity of graphene/C3N4 composites. J. Phys. Chem. C 115(15), 7355–7363 (2011). https://doi.org/10.1021/jp200953k
  146. 146.
    Jia, L., Wang, D.H., Huang, Y.X., Xu, A.W., Yu, H.Q.: Highly durable N-Doped graphene/CdS nanocomposites with enhanced photocatalytic hydrogen evolution from water under visible light irradiation. J. Phys. Chem. C 115(23), 11466–11473 (2011). https://doi.org/10.1021/jp2023617
  147. 147.
    Zhou, L., Mao, H., Wu, C., Tang, L., Wu, Z., Sun, H., Zhang, H., Zhou, H., Jia, C., Jin, Q., et al.: Label-Free graphene biosensor targeting cancer molecules based on non-covalent modification. Biosens. Bioelectron. 87, 701–707 (2017). https://doi.org/10.1016/j.bios.2016.09.025
  148. 148.
    Li, Y., Wang, C., Zhu, Y., Zhou, X., Xiang, Y., He, M., Zeng, S.: Fully integrated graphene electronic biosensor for label-free detection of lead (II) ion based on G-quadruplex structure-switching. Biosens. Bioelectron. 89, 758–763 (2017). https://doi.org/10.1016/j.bios.2016.10.061
  149. 149.
    Lee, D.H., Cho, H.S., Han, D., Chand, R., Yoon, T.J., Kim, Y.S.: Highly selective organic transistor biosensor with inkjet printed graphene oxide support system. J. Mater. Chem. B 5(19), 3580–3585 (2017). https://doi.org/10.1039/c6tb03357a
  150. 150.
    Lei, Y.M., Xiao, M.M., Li, Y.T., Xu, L., Zhang, H., Zhang, Z.Y., Zhang, G.J.: Detection of heart failure-related biomarker in whole blood with graphene field effect transistor biosensor. Biosens. Bioelectron. 91, 1–7 (2017). https://doi.org/10.1016/j.bios.2016.12.018
  151. 151.
    Ng, S.P., Qiu, G., Ding, N., Lu, X., Wu, C.M.L.: Label-free detection of 3-Nitro-L-Tyrosine with nickel-doped graphene localized surface plasmon resonance biosensor. Biosens. Bioelectron. 89, 468–476 (2017). https://doi.org/10.1016/j.bios.2016.04.017
  152. 152.
    Choi, B.G., Park, H., Park, T.J., Yang, M.H., Kim, J.S., Jang, S.-Y., Heo, N.S., Lee, S.Y., Kong, J., Hong, W.H.: Solution chemistry of self-assembled graphene nanohybrids for high-performance flexible biosensors. ACS Nano 4(5), 2910–2918 (2010). https://doi.org/10.1021/nn100145x
  153. 153.
    Maurya, J.B., Prajapati, Y.K., Singh, V., Saini, J.P., Tripathi, R.: Performance of graphene–MoS2 based surface plasmon resonance sensor using silicon layer. Opt. Quantum Electron. 47(11), 3599–3611 (2015). https://doi.org/10.1007/s11082-015-0233-z
  154. 154.
    Kanyong, P., Krampa, F.D., Aniweh, Y., Awandare, G.A.: Polydopamine-functionalized graphene nanoplatelet smart conducting electrode for bio-sensing applications. Arab. J. Chem. 1–9 (2018). https://doi.org/10.1016/j.arabjc.2018.01.001
  155. 155.
    Tachibana, N., Ikeda, S., Yukawa, Y., Kawaguchi, M.: Highly porous nitrogen-doped carbon nanoparticles synthesized via simple thermal treatment and their electrocatalytic activity for oxygen reduction reaction. Carbon N. Y. 115, 515–525 (2017). https://doi.org/10.1016/j.carbon.2017.01.034
  156. 156.
    Kruusenberg, I., Ratso, S., Vikkisk, M., Kanninen, P., Kallio, T., Kannan, A.M., Tammeveski, K.: Highly active nitrogen-doped nanocarbon electrocatalysts for alkaline direct methanol fuel cell. J. Power Sources 281, 94–102 (2015). https://doi.org/10.1016/j.jpowsour.2015.01.167
  157. 157.
    Peng X., Omasta, T.J.; Magliocca, E.; Wang, L.; Varcoe, J.R.; Mustain, W.E.: N-doped carbon CoOx nanohybrids: the first precious metal free cathode to achieve 1.0 w/cm2 peak power and 100 h life in anion-exchange membrane fuel cells. Angew. Chemie Int. Ed. 1–7 (2018). https://doi.org/10.1002/anie.201811099
  158. 158.
    Bi, E., Chen, H., Yang, X., Peng, W., Grätzel, M., Han, L.: A quasi core–shell nitrogen-doped graphene/cobalt sulfide conductive catalyst for highly efficient dye-sensitized solar cells. Energy Environ. Sci. 7(8), 2637–2641 (2014). https://doi.org/10.1039/C4EE01339E
  159. 159.
    Ma, H., Tian, J., Cui, L., Liu, Y., Bai, S., Chen, H., Shan, Z.: Porous activated graphene nanoplatelets incorporated in TiO2 photoanodes for high-efficiency dye-sensitized solar cells. J. Mater. Chem. A 3(16), 8890–8895 (2015). https://doi.org/10.1039/C5TA00527B

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ramesh Kumar Singh
    • 1
    Email author
  • Naresh Nalajala
    • 2
  • Tathagata Kar
    • 3
  • Alex Schechter
    • 1
  1. 1.Department of Chemical SciencesAriel UniversityArielIsrael
  2. 2.National Chemical Laboratory [NCL]PuneIndia
  3. 3.Department of Materials Science and EngineeringTel Aviv UniversityTel AvivIsrael

Personalised recommendations