Advertisement

Graphene-Based Advanced Materials: Properties and Their Key Applications

  • Santosh Kumar TiwariEmail author
  • Nannan WangEmail author
  • Sung Kyu Ha
Chapter
Part of the Carbon Nanostructures book series (CARBON)

Abstract

Since the last 500 years, science is becoming more and more dominant in our civilization and continuously making the life of human beings more convenient. Along with the numerous fundamental discoveries and innovations, twenty-first century will be evoked as technological achievements for a long time. Among the many outstanding scientific achievements, the introduction of graphene can be considered as one of the most important breakthroughs for this century. This single-atom thin 2D carbon nanomaterial is the foundation of all graphitic structures. Owing to its amazing physical and chemical properties, graphene has found applications in many scientific and technological fields, from medical science to aerospace engineering. However, scientists of the various disciplines are working hard individually and in collaborations around the globe to utilize and explore application potentials of the graphene and its derivatives (graphene oxide, graphene quantum dot, graphene nanoribbon, functionalized graphene etc.). In this chapter, some novel discoveries and innovations closely related to the graphene-based advanced nanomaterials for the real-time applications have been reviewed in detail, especially in contest of high-performance polymer blends, nanocomposites for catalysis, water splitting and 3D printings. In addition, a brief outline for the fabrication of graphene-based polymer blends and nanocomposites has also been discussed with appropriate citations for the further reading.

Keywords

Graphene Composite materials Polymer blends Thermo-mechanical properties and 3D printing 

Notes

Acknowledgements

Dr. Nannan is grateful to Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environment and Materials, Guangxi University, Nanning, China for all kinds of support in the articulation of this chapter.

References

  1. 1.
    Tiwari, S.K., Kumar, V., Huczko, A., Oraon, R., Adhikari, A.D., Nayak, G.C.: Magical allotropes of carbon: prospects and applications. Crit. Rev. Solid State Mater. Sci. 41, 317 (2016)Google Scholar
  2. 2.
    Wang, S., Morris, W., Liu, Y., McGuirk, C.M., Zhou, Y., Hupp, J.T., Farha, O.K., Mirkin, C.A.: Surface‐specific functionalization of nanoscale metal–organic frameworks. Angew. Chem. Int. Ed. 54, 14742 (2015)Google Scholar
  3. 3.
    Liu, G., Jin, W., Xu, N.: Graphene-based membranes. Chem. Soc. Rev. 44, 5030 (2015)Google Scholar
  4. 4.
    Li, X., Zhi, L.: Graphene hybridization for energy storage applications. Chem. Soc. Rev. 47, 3216 (2018)Google Scholar
  5. 5.
    Dimiev, A.M., Eigler, S.: Mechanism of formation and chemical structure of graphene oxide. In: Graphene Oxide: Fundamentals and Applications, pp. 36–84. 1st edn. New York (2016)Google Scholar
  6. 6.
    Novoselov, K.S., Fal, V.I., Colombo, L., Gellert, P.R., Schwab, M.G., Kim, K.: A roadmap for graphene. Nature 490, 192 (2012)Google Scholar
  7. 7.
    Cheng, Y., Lu, S., Zhang, H., Varanasi, C.V., Liu, J.: Synergistic effects from graphene and carbon nanotubes enable flexible and robust electrodes for high-performance supercapacitors. Nano Lett. 12, 4211 (2018)Google Scholar
  8. 8.
    Zurutuza, A., Marinelli, C.: Challenges and opportunities in graphene commercialization. Nat. Nanotechnol. 9, 730 (2014)CrossRefGoogle Scholar
  9. 9.
    Tiwari, S.K., Mishra, R.K., Ha, S.K., Huczko, A.: Evolution of graphene oxide and graphene: from imagination to industrialization. ChemNanoMat 4, 620 (2018)Google Scholar
  10. 10.
    Higgins, D., Zamani, P., Yu, A., Chen, Z.: The application of graphene and its composites in oxygen reduction electrocatalysis: a perspective and review of recent progress. Energy Environ. Sci. 9, 390 (2016)Google Scholar
  11. 11.
    Fan, Z., Pereira, L.F.C., Hirvonen, P., Ervasti, M.M., Elder, K.R., Donadio, D., Ala-Nissila, T., Harju, A.: Thermal conductivity decomposition in two-dimensional materials: application to graphene. Phys. Rev. B 95, 144309 (2017)Google Scholar
  12. 12.
    Tiwari, S.K., Verma, K., Saren, P., Oraon, R., De Adhikari, A., Nayak, G.C., Kumar, V.: Manipulating selective dispersion of reduced graphene oxide in polycarbonate/nylon 66 based blend nanocomposites for improved thermo-mechanical properties. RSC Adv. 7, 32731 (2017)CrossRefGoogle Scholar
  13. 13.
    Tiwari, S.K., Hatui, G., Oraon, R., De Adhikari, A., Nayak, G.C.: Mixing sequence driven controlled dispersion of graphene oxide in PC/PMMA blend nanocomposite and its effect on thermo-mechanical properties. Curr. Appl. Phys. 17 (2017)Google Scholar
  14. 14.
    Bai, H., Li, C., Wang, X., Shi, G.: On the gelation of graphene oxide. J. Phys. Chem. C 115(13), 5545–5551 (2011)Google Scholar
  15. 15.
    Zhang, Y.I., Zhang, L., Zhou, C.: Review of chemical vapor deposition of graphene and related applications. Acc. Chem. Res. 46, 2339 (2013)Google Scholar
  16. 16.
    Liu, P., Cottrill, A.L., Kozawa, D., Koman, V.B., Parviz, D., Liu, A.T., Strano, M.S.: Emerging trends in 2D nanotechnology that are redefining our understanding of “Nanocomposites”. Nano Today 21, 40 (2018)Google Scholar
  17. 17.
    Cao, Y., Zhang, J., Feng, J., Wu, P.: Compatibilization of immiscible polymer blends using graphene oxide sheets. ACS Nano 5, 5927 (2011)Google Scholar
  18. 18.
    Das, T.K., Prusty, S.: Graphene-based polymer composites and their applications. Polym.-Plast. Technol. Eng. 52, 331 (2013)Google Scholar
  19. 19.
    Lee, Y.R., Raghu, A.V., Jeong, H.M., Kim, B.K.: Properties of waterborne polyurethane/functionalized graphene sheet nanocomposites prepared by an in situ method. Macromol. Chem. Phys. 210, 1254 (2009)CrossRefGoogle Scholar
  20. 20.
    Liang, J., Xu, Y., Huang, Y., Zhang, L., Wang, Y., Li, Y., Ma, F., Guo, T., Chen, Y.J.: Infrared-triggered actuators from graphene-based nanocomposites. Phys. Chem. C, 113, 9927 (2009)Google Scholar
  21. 21.
    Xu, Y., Wang, Y., Liang, J., Huang, Y., Ma, Y., Wan, X., Chen, Y.: A hybrid material of graphene and poly (3, 4-ethyldioxythiophene) with high conductivity, flexibility, and transparency. Nano Res. 2, 348 (2009)Google Scholar
  22. 22.
    Wang, S., Tambraparni, M., Qiu, J., Tipton, J., Dean, D.: Thermal expansion of graphene composites. Macromolecules 42, 5255 (2009)Google Scholar
  23. 23.
    Yu, J., Lu, K., Sourty, E., Grossiord, N., Koning, C.E., Loos, J.: Characterization of conductive multiwall carbon nanotube/polystyrene composites prepared by latex technology. Carbon 45, 2903 (2007)Google Scholar
  24. 24.
    Kuila, T., Srivastava, S.K., Bhowmick, A.K.: Rubber/LDH nanocomposites by solution blending. J. Appl. Polym. Sci. 111, 641 (2009)Google Scholar
  25. 25.
    Yu, A., Ramesh, P., Itkis, M.E., Bekyarova, E., Haddon, R.C.: Graphite nanoplatelet−epoxy composite thermal interface materials. J. Phys. Chem. C 111, 7569 (2007)Google Scholar
  26. 26.
    Yu, A., Ramesh, P., Sun, X., Bekyarova, E., Itkis, M.E., Haddon, R.C.: Enhanced thermal conductivity in a hybrid graphite nanoplatelet–carbon nanotube filler for epoxy composites. Adv. Mater. 20, 4744 (2008)Google Scholar
  27. 27.
    Liang, J., Huang, Y., Zhang, L., Ma, Y., Wang, Y., Guo, T., Chen, Y.: Molecular‐level dispersion of graphene into poly (vinyl alcohol) and effective reinforcement of their nanocomposites. Adv. Fun. Mater. 19, 2302 (2009)Google Scholar
  28. 28.
    Ramanathan, T., Abdala, A.A., Stankovich, S., Dikin, D.A., Herrera-Alonso, M., Piner, R.D., Adamson, D.H., Schniepp, H.C., Chen, X.R., Ruoff, R.S., Nguyen, S.T.: Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol. 3, 327 (2008)Google Scholar
  29. 29.
    Bao, C., Guo, Y., Song, L., Hu, Y.J.: Poly (vinyl alcohol) nanocomposites based on graphene and graphite oxide: a comparative investigation of property and mechanism. Mater. Chem. 21, 13950 (2011)Google Scholar
  30. 30.
    Tiwari, S.K., Nimbalkar, A.S., Hong, C.K., Ha, S.K.: A green route for quick and kilogram production of reduced graphene oxide and their applications at low loadings in epoxy resins. ChemistrySelect 4, 1274 (2019)Google Scholar
  31. 31.
    Jun, Y.S., Sy, S., Ahn, W., Zarrin, H., Rasen, L., Tjandra, R., Amoli, B.M., Zhao, B., Chiu, G., Yu, A.: Highly conductive interconnected graphene foam based polymer composite. Carbon 95, 658 (2015)Google Scholar
  32. 32.
    Lan, Y., Liu, H., Cao, X., Zhao, S., Dai, K., Yan, X., Guo, Z.: Electrically conductive thermoplastic polyurethane/polypropylene nanocomposites with selectively distributed graphene. Polymer 97, 19 (2016)Google Scholar
  33. 33.
    Kuilla, T., Bhadra, S., Yao, D., Kim, N.H., Bose, S., Lee, J.H.: Recent advances in graphene based polymer composites. Prog. Polym. Sci. 35, 1375 (2010)Google Scholar
  34. 34.
    Hu, H., Wang, X., Wang, J., Wan, L., Liu, F., Zheng, H., Chen, R., Xu, C.: Preparation and properties of graphene nanosheets–polystyrene nanocomposites via in situ emulsion polymerization. Chem. Phys. Lett. 484, 253 (2010)Google Scholar
  35. 35.
    Chen, L., Chai, S., Liu, K., Ning, N., Gao, J., Liu, Q., Chen, F., Fu, Q.: Enhanced epoxy/silica composites mechanical properties by introducing graphene oxide to the interface. ACS Appl. Mater. Interfaces 4, 4404 (2012)Google Scholar
  36. 36.
    You, F., Wang, D., Li, X., Liu, M., Dang, Z.M., Hu, G.H.: Synthesis of polypropylene‐grafted graphene and its compatibilization effect on polypropylene/polystyrene blends. J. Appl. Polym. Sci. 131, 13 (2014)Google Scholar
  37. 37.
    Luo, F., Chen, L., Ning, N., Wang, K., Chen, F., Fu, Q.: Interfacial enhancement of maleated polypropylene/silica composites using graphene oxide. J. Appl. Polym. Sci. 125, E357 (2012)Google Scholar
  38. 38.
    Cao, Y., Feng, J., Wu, P.: Polypropylene-grafted graphene oxide sheets as multifunctional compatibilizers for polyolefin-based polymer blends. J. Mater. Chem. 22, 15005 (2012)Google Scholar
  39. 39.
    Mohan, V.B., Jayaraman, K., Bhattacharyya, D.: Hybridization of graphene-reinforced two polymer nanocomposites. Inter. J. Smart Nano Mat. 7, 201 (2016)Google Scholar
  40. 40.
    Pan, Y.X., Yu, Z.Z., Ou, Y.C., Hu, G.H.: A new process of fabricating electrically conducting nylon 6/graphite nanocomposites via intercalation polymerization. J. Polym. Sci. Part B: Poly. Phys. 38, 1633 (2000)Google Scholar
  41. 41.
    Wang, W.P., Liu, Y., Li, X.X., You, Y.Z.: Synthesis and characteristics of poly (methyl methacrylate)/expanded graphite nanocomposites. J. Appl. Polym. Sci. 100, 1431 (2006)Google Scholar
  42. 42.
    Chieng, B., Ibrahim, N., Yunus, W., Hussein, M., Then, Y., Loo, Y.: Effects of graphene nanoplatelets and reduced graphene oxide on poly (lactic acid) and plasticized poly (lactic acid): a comparative study. Polymers 6, 2246 (2014)CrossRefGoogle Scholar
  43. 43.
    Yuan, B., Bao, C., Song, L., Hong, N., Liew, K.M., Hu, Y.: Preparation of functionalized graphene oxide/polypropylene nanocomposite with significantly improved thermal stability and studies on the crystallization behavior and mechanical properties. Chem. Eng. J. 237, 420 (2014)CrossRefGoogle Scholar
  44. 44.
    Tang, L.C., Wan, Y.J., Yan, D., Pei, Y.B., Zhao, L., Li, Y.B., Wu, L.B., Jiang, J.X., Lai, G.Q.: The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites. Carbon 60, 27 (2013)Google Scholar
  45. 45.
    Cai, D., Yusoh, K., Song, M.: The mechanical properties and morphology of a graphite oxide nanoplatelet/polyurethane composite. Nanotechnology 20, 085712 (2009)CrossRefGoogle Scholar
  46. 46.
    Yasmin, A., Luo, J.J., Daniel, I.M.: Processing of expanded graphite reinforced polymer nanocomposites. Compos. Sci. Technol. 66, 1189 (2006)Google Scholar
  47. 47.
    Pullicino, E., Zou, W., Gresil, M., Soutis, C.: The effect of shear mixing speed and time on the mechanical properties of GNP/epoxy composites. Appl. Compos. Mater. 24, 311 (2017)Google Scholar
  48. 48.
    Ma, H.L., Zhang, Y., Hu, Q.H., He, S., Li, X., Zhai, M., Yu, Z.Z.: Enhanced mechanical properties of poly (vinyl alcohol) nanocomposites with glucose-reduced graphene oxide. Mater. Lett. 102, 18 (2013)Google Scholar
  49. 49.
    Kumar, S.K., Castro, M., Saiter, A., Delbreilh, L., Feller, J.F., Thomas, S., Grohens, Y.: Development of poly (isobutylene-co-isoprene)/reduced graphene oxide nanocomposites for barrier, dielectric and sensing applications. Mater. Lett. 96, 112 (2013)Google Scholar
  50. 50.
    Wang, J., Hu, H., Wang, X., Xu, C., Zhang, M., Shang, X.: Preparation and mechanical and electrical properties of graphene nanosheets–poly (methyl methacrylate) nanocomposites via in situ suspension polymerization. J. Appl. Polym. Sci. 122, 1871 (2011)Google Scholar
  51. 51.
    Guo, J., Ren, L., Wang, R., Zhang, C., Yang, Y., Liu, T.: Water dispersible graphene noncovalently functionalized with tryptophan and its poly (vinyl alcohol) nanocomposite. Comp. Part B: Eng. 42, 2135 (2011)Google Scholar
  52. 52.
    Fang, M., Wang, K., Lu, H., Yang, Y., Nutt, S.: Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. J. Mater. Chem. 19, 7105 (2009)Google Scholar
  53. 53.
    Aldosari, M., Othman, A., Alsharaeh, E.: Synthesis and characterization of the in situ bulk polymerization of PMMA containing graphene sheets using microwave irradiation. Molecules 18, 3167 (2013)Google Scholar
  54. 54.
    Swain, S.: Synthesis and characterization of graphene based unsaturated polyester resin composites. Trans. Electr. Electr. Mater. 14, 58 (2013)Google Scholar
  55. 55.
    Zhang, H.B., Zheng, W.G., Yan, Q., Yang, Y., Wang, J.W., Lu, Z.H., Ji, G.Y., Yu, Z.Z.: Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer 51, 1196 (2010)Google Scholar
  56. 56.
    Yang, Y.K., He, C.E., Peng, R.G., Baji, A., Du, X.S., Huang, Y.L., Xie, X.L., Mai, Y.W.: Non-covalently modified graphene sheets by imidazolium ionic liquids for multifunctional polymer nanocomposites. J. Mater. Chem. 22, 5675 (2012)Google Scholar
  57. 57.
    Potts, J.R., Lee, S.H., Alam, T.M., An, J., Stoller, M.D., Piner, R.D., Ruoff, R.S.: Thermomechanical properties of chemically modified graphene/poly (methyl methacrylate) composites made by in situ polymerization. Carbon 49, 2623 (2011)Google Scholar
  58. 58.
    Quan, H., Zhang, B.Q., Zhao, Q., Yuen, R.K., Li, R.K.: Facile preparation and thermal degradation studies of graphite nanoplatelets (GNPs) filled thermoplastic polyurethane (TPU) nanocomposites. Compos. Pt A. Appl. Sci. Manuf. 40, 1513 (2009)Google Scholar
  59. 59.
    Liu, C., Wang, Z., Huang, Y.A., Xie, H., Liu, Z., Chen, Y., Lei, W., Hu, L., Zhou, Y., Cheng, R.: One-pot preparation of unsaturated polyester nanocomposites containing functionalized graphene sheets via a novel solvent-exchange method. RSC Adv. 3, 22388 (2013)Google Scholar
  60. 60.
    Mu, Q., Feng, S.: Thermal conductivity of graphite/silicone rubber prepared by solution intercalation. Thermochim. Acta 462, 75 (2007)Google Scholar
  61. 61.
    Choi, W., Lahiri, I., Seelaboyina, R., Kang, Y.S.: Synthesis of graphene and its applications: a review. Crit. Rev. Solid State Mater. Sci. 35, 71 (2010)CrossRefGoogle Scholar
  62. 62.
    Lan, Y., Liu, H., Cao, X., Zhao, S., Dai, K., Yan, X., Zheng, G., Liu, C., Shen, C., Guo, Z.: Electrically conductive thermoplastic polyurethane/polypropylene nanocomposites with selectively distributed graphene. Polymer 97, 19 (2016)Google Scholar
  63. 63.
    Zitolo, A., Goellner, V., Armel, V., Sougrati, M.T., Mineva, T., Stievano, L., Fonda, E., Jaouen, F.: Identification of catalytic sites for oxygen reduction in iron-and nitrogen-doped graphene materials. Nat. Mater. 14, 937 (2015)Google Scholar
  64. 64.
    Hou, Y., Wen, Z., Cui, S., Ci, S., Mao, S., Chen, J.: An advanced nitrogen‐doped graphene/cobalt‐embedded porous carbon polyhedron hybrid for efficient catalysis of oxygen reduction and water splitting. Adv. Funct. Mater. 25, 882 (2015)Google Scholar
  65. 65.
    Gnanasekaran, K., Heijmans, T., Van Bennekom, S., Woldhuis, H., Wijnia, S., de With, G., Friedrich, H.: 3D printing of CNT-and graphene-based conductive polymer nanocomposites by fused deposition modeling. App. Mater. Today. 9, 28 (2017)Google Scholar
  66. 66.
    Wang, X., Jiang, M., Zhou, Z., Gou, J., Hui, D.: 3D printing of polymer matrix composites: a review and prospective. Comp. Pt B: Eng. 110, 442–458 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environment and MaterialsGuangxi UniversityNanningChina
  2. 2.Department of Mechanical EngineeringHanyang UniversitySeoulSouth Korea

Personalised recommendations