Facile Room Temperature Synthesis of Reduced Graphene Oxide as Efficient Metal-Free Electrocatalyst for Oxygen Reduction Reaction

  • Arpan Kumar NayakEmail author
  • Akshaya Kumar Swain
Part of the Carbon Nanostructures book series (CARBON)


A continuous global demand for energy resources poses serious threats to the human race in forms of pollution that stimulates many natural hazards. To overcome such problems, fuel cell technology seems to be a viable solution. However, it remains a challenge to develop highly efficient metal-free electrocatalysts for oxygen reduction reaction (ORR) to achieve optimal performance for the fuel cells. Herein, we demonstrate a facile room temperature synthesis of reduced graphene oxide (RGO) via chemical reduction of graphene oxide (GO) using sodium iodide (NaI) and hydrochloric acid (HCl). As-synthesized GO and RGO were employed as an efficient electrocatalyst for the ORR in 0.1 M KOH. The RGO shows higher ORR activity compared to GO due to its higher surface area and low charge transfer resistance. Thus as-synthesized RGO is found to be a viable metal-free electrocatalyst with higher current density, larger half-wave potential, and long-term operation stability for ORR via a four-electron pathway in alkaline media. The high performance of cost-effective RGO-based ORR electrodes is suitable to function as an alternative to platinum-based materials for energy conversion device applications.


  1. 1.
    Georgakilas, V., Perman, J.A., Tucek, J., Zboril, R.: Chem. Rev. 115, 4744 (2015)CrossRefGoogle Scholar
  2. 2.
    Geim, A.K.: Angew. Chem. Int. Ed. 50, 6966 (2011)Google Scholar
  3. 3.
    Geim, A.K., Kim, P.: Sci. Am. 298, 90 (2008)CrossRefGoogle Scholar
  4. 4.
    Tuček, J., Błoński, P., Ugolotti, J., Swain, A.K., Enoki, T., Zbořil, R.: Chem. Soc. Rev. 47, 3899 (2018)CrossRefGoogle Scholar
  5. 5.
    Neto, A.C., Guinea, F., Peres, N.M., Novoselov, K.S., Geim, A.K.: Rev. Mod. Phys. 81, 109 (2009)CrossRefGoogle Scholar
  6. 6.
    Sarma, S.D., Adam, S., Hwang, E.H., Rossi, E.: Rev. Mod. Phys. 83, 407 (2011)CrossRefGoogle Scholar
  7. 7.
    Xiang, Q., Yu, J., Jaroniec, M.: Chem. Soc. Rev. 41, 782 (2012)CrossRefGoogle Scholar
  8. 8.
    Swain, A.K., Pradhan, L., Bahadur, D., Appl, A.C.S.: Mater. Interfaces 7, 8013 (2015)CrossRefGoogle Scholar
  9. 9.
    Sun, Y., Shi, G.: J. Polym. Sci. B 51, 231 (2013)CrossRefGoogle Scholar
  10. 10.
    Yu, X., Ye, S.: J. Power Sources 172, 145 (2007)CrossRefGoogle Scholar
  11. 11.
    Liang, Y., Li, Y., Wang, H., Zhou, J., Wang, J., Regier, T., Dai, H.: Nat. Mater. 10, 780 (2011)CrossRefGoogle Scholar
  12. 12.
    Jaouen, F., Proietti, E., Lefevre, M., Chenitz, R., Dodelet, J.P., Wu, G., Chung, H.T., Johnston, C.M., Zelenay, P.: Energy Environ. Sci. 4, 114 (2011)CrossRefGoogle Scholar
  13. 13.
    Liang, H.W., Wei, W., Wu, Z.S., Feng, X., Müllen, K.: J. Am. Chem. Soc. 135, 16002 (2013)CrossRefGoogle Scholar
  14. 14.
    Liu, X., Dai, L.: Nat. Rev. Mater. 1, 16064 (2016)CrossRefGoogle Scholar
  15. 15.
    Gong, K., Du, F., Xia, Z., Durstock, M., Dai, L.: Science 323, 760 (2009)CrossRefGoogle Scholar
  16. 16.
    Jiang, Y., Yang, L., Sun, T., Zhao, J., Lyu, Z., Zhuo, O., Wang, X., Wu, Q., Ma, J., Hu, Z.: ACS Catal. 5, 6707 (2015)CrossRefGoogle Scholar
  17. 17.
    Li, X.L., Zhang, G.Y., Bai, X.D., Sun, X.M., Wang, X.R., Wang, E., Dai, H.J.: Nat. Nanotechnol. 3, 538 (2008)CrossRefGoogle Scholar
  18. 18.
    Nayak, A.K., Das, A.K., Pradhan, D.: ACS Sustain. Chem. Eng. 5, 10128 (2017)CrossRefGoogle Scholar
  19. 19.
    Wang, T., Huang, D., Yang, Z., Xu, S., He, G., Li, X., Hu, N., Yin, G., He, D., Zhang, L.: Nano-Micro Lett. 8, 95 (2016)CrossRefGoogle Scholar
  20. 20.
    Qu, L.T., Liu, Y., Baek, J.B., Dai, L.: ACS Nano 4, 1321 (2010)CrossRefGoogle Scholar
  21. 21.
    Luo, Z., Lim, S., Tian, Z., Shang, J., Lai, L., MacDonald, B., Fu, C., Shen, Z., Yu, T., Lin, J.: J. Mater. Chem. 21, 8038 (2011)CrossRefGoogle Scholar
  22. 22.
    Geng, D., Chen, Y., Chen, Y., Li, Y., Li, R., Sun, X., Ye, S., Knights, S.: Energy Environ. Sci. 4, 760 (2011)CrossRefGoogle Scholar
  23. 23.
    Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y.Y., Wu, Y., Nguyen, S.T., Ruoff, R.S.: Carbon 45, 1558 (2007)CrossRefGoogle Scholar
  24. 24.
    Wang, G.X., Yang, J., Park, J., Gou, X.L., Wang, B., Liu, H., Yao, J.: J. Phys. Chem. C 112, 8192 (2008)CrossRefGoogle Scholar
  25. 25.
    Chen, Z., Ren, W., Gao, L., Liu, B., Pei, S., Cheng, H.M.: Nat. Mater. 10, 424 (2011)CrossRefGoogle Scholar
  26. 26.
    Yang, W., Chen, G., Shi, Z., Liu, C.C., Zhang, L., Xie, G., Cheng, M., Wang, D., Yang, R., Shi, D., Watanabe, K.: Nat. Mater. 12, 792 (2013)CrossRefGoogle Scholar
  27. 27.
    Guo, H.L., Wang, X.F., Qian, Q.Y., Wang, F.B., Xia, X.H.: ACS Nano 3, 2653 (2009)CrossRefGoogle Scholar
  28. 28.
    Murphy, S., Huang, L., Kamat, P.V.: J. Phys. Chem. C 117, 4740 (2013)CrossRefGoogle Scholar
  29. 29.
    Chua, C.K., Pumera, M.: Chem. Soc. Rev. 43, 291 (2014)CrossRefGoogle Scholar
  30. 30.
    Park, S., An, J., Potts, J.R., Velamakanni, A., Murali, S., Ruoff, R.S.: Carbon 49, 3019 (2011)CrossRefGoogle Scholar
  31. 31.
    Furst, A., Berlo, R.C., Hooton, S.: Chem. Rev. 65, 51 (1965)CrossRefGoogle Scholar
  32. 32.
    Fan, Z.J., Kai, W., Yan, J., Wei, T., Zhi, L.J., Feng, J., Ren, Y.M., Song, L.P., Wei, F.: ACS Nano 5, 191 (2010)Google Scholar
  33. 33.
    Moon, I.K., Lee, J., Ruoff, R.S., Lee, H.: Nat. Commun. 1, 73 (2010)Google Scholar
  34. 34.
    Hummers, W.S., Jr, Offeman, R.E.: J. Am. Chem. Soc. 80, 1339 (1958)Google Scholar
  35. 35.
    Mhamane, D., Ramadan, W., Fawzy, M., Rana, A., Dubey, M., Rode, C., Lefez, B., Hannoyer, B., Ogale, S.: Green Chem. 13, 1990 (2011)CrossRefGoogle Scholar
  36. 36.
    Lin, X., Shen, X., Zheng, Q., Yousefi, N., Ye, L., Mai, Y.W., Kim, J.K.: ACS Nano 6, 10708 (2012)CrossRefGoogle Scholar
  37. 37.
    Pham, V.H., Dang, T.T., Singh, K., Hur, S.H., Shin, E.W., Kim, J.S., Lee, M.A., Baeck, S.H., Chung, J.S.: J. Mater. Chem. A 1, 1070 (2013)CrossRefGoogle Scholar
  38. 38.
    Cui, P., Lee, J., Hwang, E., Lee, H.: Chem. Commun. 47, 12370 (2011)CrossRefGoogle Scholar
  39. 39.
    How, G.T.S., Pandikumar, A., Ming, H.N., Ngee, L.H.: Sci. Rep. 4, 5044 (2014)CrossRefGoogle Scholar
  40. 40.
    Tiwari, S.K., Huczko, A., Oraon, R., De Adhikari, A., Nayak, G.C.: J. Mater. Sci. 51, 6156 (2010)CrossRefGoogle Scholar
  41. 41.
    Zhang, L., Zhang, F., Yang, X., Long, G., Wu, Y., Zhang, T., Leng, K., Huang, Y., Ma, Y., Yu, A., Chen, Y.: Sci. Rep. 3, 1408 (2013)CrossRefGoogle Scholar
  42. 42.
    Vinayan, B.P., Nagar, R., Raman, V., Rajalakshmi, N., Dhathathreyan, K.S., Ramaprabhu, S.: J. Mater. Chem. 22, 9949 (2012)CrossRefGoogle Scholar
  43. 43.
    Li, G., Jing, M., Chen, Z., He, B., Zhou, M., Hou, Z.: RSC Adv. 7, 10376 (2017)CrossRefGoogle Scholar
  44. 44.
    Zheng, Y., Jiao, Y., Ge, L., Jaroniec, M., Qiao, S.Z.: Angew. Chem. 125, 3192 (2013)CrossRefGoogle Scholar
  45. 45.
    Sheng, Z.H., Gao, H.L., Bao, W.J., Wang, F.B., Xia, X.H.: J. Mater. Chem. 22, 390 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Physics, School of Advanced SciencesVellore Institute of Technology (VIT)VelloreIndia

Personalised recommendations