Advertisement

Present Status and Prospect of Graphene Research

  • Sumanta SahooEmail author
  • Ganesh Chandra Nayak
Chapter
Part of the Carbon Nanostructures book series (CARBON)

Abstract

Among various carbon allotropies, graphene has been considered the most attractive one, till date. After its discovery, graphene research has been gone through different phases. With tremendous progress in graphene research, various types of advanced graphene materials have been developed depending on the specific application. Different synthetic approaches have been employed to synthesize high-quality graphene materials. Recently, graphene has been successfully combined with other promising 2D materials to form multifunctional 2D hybrids. In this chapter, the recent progress on graphene research has been emphasized. The current trends of the synthesis, properties, application, and commercialization of graphene materials have been briefly discussed.

Keywords

Graphene derivatives Graphene synthesis Graphene functionalization Graphene doping Heterostructures of graphene 

Notes

Acknowledgements

S. Sahoo acknowledges DST-SERB, India, for the national postdoctoral fellowship (NPDF File No.: PDF/2017/000328).

References

  1. 1.
    Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)CrossRefGoogle Scholar
  2. 2.
    Meyer, J.C., Geim, A.K., Katsnelson, M.I., Novoselov, K.S., Booth, T.J., Roth, S.: The structure of suspended graphene sheets. Nature 446, 60–63 (2007)CrossRefGoogle Scholar
  3. 3.
    Rao, C.N.R., Sood, A.K., Subrahmanyam, K.S., Govindaraj, A.: Graphene: the new two-dimensional nanomaterial. Angew. Chem. 48, 7752–7777 (2009)CrossRefGoogle Scholar
  4. 4.
    Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)Google Scholar
  5. 5.
    Ghosh, S., Bao, W., Nika, D.L., Subrina, S., Pokatilov, E.P., Lau, C.N., Balandin, A.A.: Dimensional crossover of thermal transport in few-layer graphene. Nat. Mater. 9, 555–558 (2010)CrossRefGoogle Scholar
  6. 6.
    Mahmoudi, T., Wang, Y., Hahn, Yoon-Bong: Graphene and its derivatives for solar cells application. Nano Energy 47, 51–65 (2018)CrossRefGoogle Scholar
  7. 7.
    Edwards, R.S., Coleman, K.S.: Graphene synthesis: relationship to applications. Nanoscale 5, 38–51 (2013)CrossRefGoogle Scholar
  8. 8.
    Allen, M.J., Tung, V.C., Kaner, R.B.: Honeycomb carbon: a review of graphene. Chem. Rev. 110, 132–145 (2010)CrossRefGoogle Scholar
  9. 9.
    Dimiev, A.M., Ceriotti, G., Metzger, A., Kim, N.D., Tour, J.M.: Chemical mass production of graphene nanoplatelets in~ 100% yield. ACS Nano 10, 274–279 (2015)CrossRefGoogle Scholar
  10. 10.
    Lopes, L.C., da Silva, L.C., Vaz, B.G., Oliveira, A.R., Oliveira, M.M., Rocco, M.L., Orth, E.S., Zarbin, A.J.: Facile room temperature synthesis of large graphene sheets from simple molecules. Chem. Sci. 9, 7297–7303 (2018)CrossRefGoogle Scholar
  11. 11.
    Ruan, G., Sun, Z., Peng, Z., Tour, J.M.: Growth of graphene from food, insects, and waste. ACS Nano 5, 7601–7607 (2011)CrossRefGoogle Scholar
  12. 12.
    Shah, J., Lopez-Mercado, J., Carreon, M.G., Lopez-Miranda, A., Carreon, M.L.: Plasma Synthesis of Graphene from Mango Peel. ACS Omega 3, 455–463 (2018)CrossRefGoogle Scholar
  13. 13.
    Chen, F., Yang, J., Bai, T., Long, B., Zhou, X.: Facile synthesis of few-layer graphene from biomass waste and its application in lithium ion batteries. J. Electroanal. Chem. 768, 18–26 (2016)CrossRefGoogle Scholar
  14. 14.
    Ding, Z., Li, F., Wen, J., Wang, X., Sun, R.: Gram-scale synthesis of single-crystalline graphene quantum dots derived from lignin biomass. Green Chem. 20, 1383–1390 (2018)CrossRefGoogle Scholar
  15. 15.
    Wang, Z., Yu, J., Zhang, X., Li, N., Liu, B., Li, Y., Dissanayake, S., Appl, A.C.S.: Large-scale and controllable synthesis of graphene quantum dots from rice husk biomass: a comprehensive utilization strategy. Mater. Interfaces 8, 1434–1439 (2016)CrossRefGoogle Scholar
  16. 16.
    Purkait, T., Singh, G., Singh, M., Kumar, D., Dey, R.S.: Large area few-layer graphene with scalable preparation from waste biomass for high-performance supercapacitor. Sci. Rep. 7, 15239 (2017)CrossRefGoogle Scholar
  17. 17.
    León, V., Rodriguez, A.M., Prieto, P., Prato, M., Vázquez, E.: Exfoliation of Graphite with Triazine Derivatives under Ball-Milling Conditions: Preparation of Few-Layer Graphene via Selective Noncovalent Interactions. ACS Nano 8, 563–571 (2014)CrossRefGoogle Scholar
  18. 18.
    Jeon, I.Y., Shin, Y.R., Sohn, G.J., Choi, H.J., Bae, S.Y., Mahmood, J., Dai, L.: Edge-carboxylated graphene nanosheets via ball milling. Proc. Natl. Acad. Sci. 109, 5588–5593 (2012)Google Scholar
  19. 19.
    Yan, L., Lin, M., Zeng, C., Chen, Z., Zhang, S., Zhao, X., Guo, M.: Electroactive and biocompatible hydroxyl-functionalized graphene by ball milling. J. Mater. Chem 22, 8367–8371 (2012)Google Scholar
  20. 20.
    Xu, Z., Li, H., Li, W., Cao, G., Zhang, Q., Li, K., Wang, J.: Large-scale production of graphene by microwave synthesis and rapid cooling. Chem. Comm. 47, 1166–1168 (2011)CrossRefGoogle Scholar
  21. 21.
    Fei, H., Dong, J., Wan, C., Zhao, Z., Xu, X., Lin, Z., Zhao, S.: Microwave-assisted rapid synthesis of graphene-supported single atomic metals. Adv. Mater. 30, 1802146 (2018)Google Scholar
  22. 22.
    Murugan, A.V., Muraliganth, T., Manthiram, A.: Rapid, facile microwave-solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy strorage. Chem. Mater. 21, 5004–5006 (2009)CrossRefGoogle Scholar
  23. 23.
    Raccichini, R., Varzi, A., Passerini, S., Scrosati, B.: The role of graphene for electrochemical energy storage. Nat. Mater 14, 271 (2015)Google Scholar
  24. 24.
    Bianco, A., Cheng, H.M., Enoki, T., Gogotsi, Y., Hurt, R.H., Koratkar, N., Zhang, J.: All in the graphene family – A recommended nomenclature for two-dimensional carbon materials. Carbon 65, 1–6 (2013)CrossRefGoogle Scholar
  25. 25.
    Zhao, S., Lv, Y., Yang, X.: Layer-dependent nanoscale electrical properties of graphene studied by conductive scanning probe microscopy. Nanoscale Res. Lett. 6, 498 (2011)CrossRefGoogle Scholar
  26. 26.
    Ziegler, D., Gava, P., Güttinger, J., Molitor, F., Wirtz, L., Lazzeri, M., Stampfer, C.: Variations in the work function of doped single-and few-layer graphene assessed by Kelvin probe force microscopy and density functional theory. Phys. Rev. B 83, 235434 (2011)Google Scholar
  27. 27.
    Chen, D., Feng, H., Li, J.: Graphene oxide: preparation, functionalization, and electrochemical applications. Chem. Rev. 112, 6027–6053 (2012)CrossRefGoogle Scholar
  28. 28.
    Deng, S., Berry, V.: Wrinkled, rippled and crumpled graphene: an overview of formation mechanism, electronic properties, and applications. Mater. Today 19, 197–212 (2016)CrossRefGoogle Scholar
  29. 29.
    Li, C., Shi, G.: Three-dimensional graphene architectures. Nanoscale 4, 5549–5563 (2012)CrossRefGoogle Scholar
  30. 30.
    Ma, Y., Chen, Y.: Three-dimensional graphene networks: synthesis, properties and applications. Natl. Sci. Rev. 2, 40–53 (2015)CrossRefGoogle Scholar
  31. 31.
    Sha, J., Li, Y., Villegas Salvatierra, R., Wang, T., Dong, P., Ji, Y., Ajayan, P.M.: Three-dimensional printed graphene foams. ACS Nano 11, 6860–6867 (2017)Google Scholar
  32. 32.
    Chen, K., Shi, L., Zhang, Y., Liu, Z.: Scalable chemical-vapour-deposition growth of three-dimensional graphene materials towards energy-related applications. Chem. Soc. Rev. 47(9), 3018–3036 (2018)CrossRefGoogle Scholar
  33. 33.
    Qin, Z., Jung, G.S., Kang, M.J., Buehler, M.J.: The mechanics and design of a lightweight three-dimensional graphene assembly. Sci. Adv. 3, 1601536 (2017)CrossRefGoogle Scholar
  34. 34.
    Wang, H., Sun, K., Tao, F., Stacchiola, D.J., Hu, Y.H.: 3D honeycomb-like structured graphene and its high efficiency as a counter-electrode catalyst for dye-sensitized solar cells. Angew. Chem. 52(35), 9210–9214 (2013)Google Scholar
  35. 35.
    Celis, A., Nair, M.N., Taleb-Ibrahimi, A., Conrad, E.H., Berger, C., de Heer, W.A., Tejeda, A.: Graphene nanoribbons: fabrication, properties and devices. J. Phys. D Appl. Phys. 49, 143001 (2016)CrossRefGoogle Scholar
  36. 36.
    Dutta, S., Pati, S.K.: Novel properties of graphene nanoribbons: a review. J. Mater. Chem. 20, 8207–8223 (2010)CrossRefGoogle Scholar
  37. 37.
    James, D.K., Tour, J.M.: Macromol. The chemical synthesis of graphene nanoribbons-a tutorial review. Chem. Phys. 213, 1033–1050 (2012)CrossRefGoogle Scholar
  38. 38.
    Chen, W., Lv, G., Hu, W., Li, D., Chen, S., Dai, Z.: Synthesis and applications of graphene quantum dots: A review. Nanotechnol. Rev. 7, 157–185 (2018)CrossRefGoogle Scholar
  39. 39.
    Kaur, M., Kaur, M., Sharma, V.K.: Nitrogen-doped graphene and graphene quantum dots: A review on synthesis and applications in energy, sensors and environment. Adv. Colloid Interface Sci. 259, 44–64 (2018)CrossRefGoogle Scholar
  40. 40.
    Bak, S., Kim, D., Lee, H.: Graphene quantum dots and their possible energy applications: A review. Curr. Appl. Phys. 16, 1192–1201 (2016)CrossRefGoogle Scholar
  41. 41.
    Lin, Y., Liao, Y., Chen, Z., Connell, J.W.: Holey graphene: a unique structural derivative of graphene. Mater. Res. Lett. 5, 209–234 (2017)CrossRefGoogle Scholar
  42. 42.
    Fan, Z., Wang, Y., Xie, Z., Wang, D., Yuan, Y., Kang, H., Liu, Y.: Modified MXene/holey graphene films for advanced supercapacitor electrodes with superior energy storage. Adv. Sci. 5, 1800750 (2018)CrossRefGoogle Scholar
  43. 43.
    Georgakilas, V., Otyepka, M., Bourlinos, A.B., Chandra, V., Kim, N., Kemp, K.C., Kim, K.S.: Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 112, 6156–6214 (2012)CrossRefGoogle Scholar
  44. 44.
    Wang, X., Shi, G.: An introduction to the chemistry of graphene. Phys. Chem. Chem. Phys. 17, 28484–28504 (2015)CrossRefGoogle Scholar
  45. 45.
    Hu, C., Liu, D., Xiao, Y., Dai, L.: Functionalization of graphene materials by heteroatom-doping for energy conversion and storage. Prog. Nat Sci-Mater. 28, 121–132 (2018)CrossRefGoogle Scholar
  46. 46.
    Lee, H., Paeng, K., Kim, I.S.: A review of doping modulation in graphene. Synth. Met. 244, 36–47 (2018)CrossRefGoogle Scholar
  47. 47.
    Wang, H., Maiyalagan, T., Wang, X.: Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal. 2, 781–794 (2012)CrossRefGoogle Scholar
  48. 48.
    Xu, Y., Wang, S., Hou, X., Sun, Z., Jiang, Y., Dong, Z., Cao, Y.: Coal-derived nitrogen, phosphorus and sulfur co-doped graphene quantum dots: A promising ion fluorescent probe. Appl Surf Sci. 445, 519–526 (2018)Google Scholar
  49. 49.
    Li, G., Li, Y., Liu, H., Guo, Y., Li, Y., Zhu, D.: Architecture of graphdiyne nanoscale films. Chem. Commun. 46, 3256–3258 (2010)CrossRefGoogle Scholar
  50. 50.
    Inagaki, M., Kang, F.: Graphene derivatives: graphane, fluorographene, graphene oxide, graphyne and graphdiyne. J. Mater. Chem. A 2, 13193–13206 (2014)CrossRefGoogle Scholar
  51. 51.
    Peng, Q., Dearden, A.K., Crean, J., Han, L., Liu, S., Wen, X., De, S.: New materials graphyne, graphdiyne, graphone, and graphane: review of properties, synthesis, and application in nanotechnology. Nanotechnol. Sci. Appl. 7, 129 (2014)Google Scholar
  52. 52.
    Chronopoulos, D.D., Bakandritsos, A., Pykal, M., Zbořil, R., Otyepka, M.: Chemistry, properties, and applications of fluorographene. Appl. Mater. Today 9, 60–70 (2017)Google Scholar
  53. 53.
    Paupitz, R., Autreto, P.A.S., Legoas, S.B., Srinivasan, S.G., van Duin, A.C.T., Galvao, D.S.: Graphene to fluorographene and fluorographane: a theoretical study. Nanotechnol. 24, 035706 (2012)CrossRefGoogle Scholar
  54. 54.
    Yan, Z., Peng, Z., Casillas, G., Lin, J., Xiang, C., Zhou, H., Yang, Y., Ruan, G., Raji, A.-R.O., Samuel, E.L.G., Hauge, R.H., Yacaman, M.J., Tour, J.M.: Rebar graphene. ACS Nano 8, 5061–5068 (2014)CrossRefGoogle Scholar
  55. 55.
    Li, Y., Peng, Z., Larios, E., Wang, G., Lin, J., Yan, Z., Tour, J.M.: Rebar graphene from functionalized boron nitride nanotubes. ACS Nano 9, 532–538 (2014)CrossRefGoogle Scholar
  56. 56.
    Li, X., Sha, J., Lee, S.-K., Li, Y., Ji, Y., Zhao, Y., Tour, J.M.: Rivet Graphene. ACS Nano 10, 7307–7313 (2016)CrossRefGoogle Scholar
  57. 57.
    Solís-Fernández, P., Bissett, M., Ago, H.: Synthesis, structure and applications of graphene-based 2D heterostructures. Chem. Soc. Rev. 46, 4572–4613 (2017)CrossRefGoogle Scholar
  58. 58.
    Das, P., Fu, Q., Bao, X., Wu, Z.S.: Recent advances in the preparation, characterization, and applications of two-dimensional heterostructures for energy storage and conversion. J. Mater. Chem. A 6, 21747–21784 (2018)CrossRefGoogle Scholar
  59. 59.
    Thanh, T.D., Chuong, N.D., Van Hien, H., Kshetri, T., Kim, N.H., Lee, J.H.: Recent advances in two-dimensional transition metal dichalcogenides-graphene heterostructured materials for electrochemical applications. Prog. Mater Sci. 96, 51–85 (2018)CrossRefGoogle Scholar
  60. 60.
    Ng, V.M.H., Huang, H., Zhou, K., Lee, P.S., Que, W., Xu, J.Z., Kong, L.B.: Recent progress in layered transition metal carbides and/or nitrides (MXenes) and their composites: synthesis and applications. J. Mater. Chem. A 5, 3039–3068 (2017)CrossRefGoogle Scholar
  61. 61.
    Anasori, B., Lukatskaya, M.R., Gogotsi, Y.: 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017)CrossRefGoogle Scholar
  62. 62.
  63. 63.
    Ghany, N.A.A., Elsherif, S.A., Handal, H.T.: Revolution of Graphene for different applications: State-of-the-art. J. Surf. Interfac. 9, 93–106 (2017)Google Scholar
  64. 64.
    Ren, S., Rong, P., Yu, Q.: Preparations, properties and applications of graphene in functional devices: A concise review. Ceram. Int. 44, 11940–11955 (2018)CrossRefGoogle Scholar
  65. 65.
    Luo, C., Zhou, L., Chiou, K., Huang, J.: Multifunctional graphene hair dye. Chem 4, 784–794 (2018)Google Scholar
  66. 66.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of ChemistryIndian Institute of Technology (Indian School of Mines) DhanbadDhanbadIndia

Personalised recommendations