Advertisement

Photonics-Enhanced Image-Detection Sensing of Multiphase Flows

  • Sergio L. Carrasco-OrtizEmail author
  • Eduardo Valero
  • Maria Morant
  • Roberto Llorente
Chapter
  • 7 Downloads
Part of the Springer Series in Optical Sciences book series (SSOS, volume 223)

Abstract

This chapter describes a photonic sensor system based on laser excitation and CMOS array image capture altogether advanced digital signal processing algorithms. The photonic sensor targets the detection and characterization of cavitation bubbles in multiphase water flows. This sensor finds application in areas where a multiphase water flow is produced, by example bubbling water column reactors, turbine impellers, marine screw and pump-jet propellers where cavitation can be produced, and water-air mixing volumes in dam intakes and spillways in hydroelectric energy generation plants. The photonic sensor comprises an image capture CMOS array with a polymeric tunable optical lens which digitises an area illuminated by a laser diode operating at wavelength 532 nm. This approach permits high-contrast acquisition independent of external lighting conditions. Ad hoc signal processing algorithms are applied on the digitised image in order to evaluate the statistical distribution of bubble size, shape, speed and concentration inside the multiphase flow. Experimental demonstration of the developed sensor indicates its proper operation, being capable of a complete statistical bubble characterization in a water column at 0.01 and 0.05 MPa pressure levels. The performance of different computational methods, including Optical Flow, SIFT and SURF, has been also evaluated in the experimental work for comparison of the underlying image processing algorithms.

Notes

Acknowledgements

This work was supported in part by Spain National Plan MINECO/FEDER UE RTC-2014-2232-3 HIDRASENSE and TEC2015-70858-C2-1-R XCORE projects. BIOFRACTIVE project with IIS La Fe is also acknowledged. Sergio L. Carrasco-Ortiz work was supported by UPV predoc FPI-UPV-2017 program. Maria Morant work was partly supported by Spain Juan de la Cierva IJCI-2016-27578 grant.

References

  1. 1.
    K. Iyer, S. Shridharani, S. Arunkumar, M. Venkatesan, Application of image processing for a bubble column reactor, in Computational Intelligence and Computing Research (ICCIC) (2013)Google Scholar
  2. 2.
    Y. Bian, F. Dong, H. Wang, Reconstruction of rising bubble with digital image processing method, in Instrumentation and Measurement Technology Conference (I2MTC) (2011)Google Scholar
  3. 3.
    S.L. Carrasco-Ortiz, E. Valero, M. Morant, R. Llorente, Photonic sensing and characterisation of multiphase water flows, in PHOTOPTICS 2018—6th International Conference on Photonics, Optics and Laser Technology (2018), pp. 55–62Google Scholar
  4. 4.
    R. Ramazani-Rend, S. Chelikani, E.M. Sparrow, J.P. Abraham, Experimental and numerical investigation of orbital atherectomy: absence of cavitation. J. Biomed. Sci. Eng. 3(11), 1108–1116 (2010)CrossRefGoogle Scholar
  5. 5.
    N. Li, L. Jia, P. Zhang, Detection and volume estimation of bubbles in blood circuit of hemodialysis by morphological image processing, in Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM) (2015)Google Scholar
  6. 6.
    P. Jonsson, Evaluation of air micro bubbles in dialysis sustems in vitro. Am. J. Kidney Dis. 63(5) (2014)Google Scholar
  7. 7.
    R.F. Muddle, H.B.M. Schulte, H.E.A. Vand den Akker, Analysis of a bubbling 2-D gas-fluidized bed using image processing. Powder Technol. 81(2), 149–159 (1994)CrossRefGoogle Scholar
  8. 8.
    C.E. Brennen, Fundamentals of Multiphase Flow (Cambridge University Press, 2005)Google Scholar
  9. 9.
    Heliciel, s.f. Mecaflux Heliciel. https://www.heliciel.com/en/aerodynamique-hydrodynamique/cavitation-%20helices-hydrofoils.htm. Last accessed 27 March 2018
  10. 10.
    ETH Zurich, Laboratory of Hydraulics, Hydrology and Glaciology, s.f. Air detrainment of high-speed waters flows. http://www.vwa.ethz.ch/people/hy/archive/hy_151_air_detrainment. Last accessed 12 Dec 2017
  11. 11.
    G.V.S.S. Mittapalli, M. Madavi, R. Anirudh, E.R. Goud, Analysis of pressures on Nagarjuna Sagar spillway. EC Agric. 1(1), 23–34 (2015)Google Scholar
  12. 12.
    H.C. Buckland, I. Masters, J.A.C. Orme, T. Baker, Cavitation inception and simulation in blade element momentum theory for modelling tidal stream turbine. Part A: J. Power Energy, Juny 227(4), 479–485 (2013)Google Scholar
  13. 13.
    L. Shan-Yong, W. Jiang-An, Z. Si-Guang et al., Laser detection method of ship wake bubbles based on multiple scattering intensity and polarization characteristics. Acta Phys. Sin. 62(6), 060704 (2013)Google Scholar
  14. 14.
    A.J. Peterka, The effect of entrained air on cavitation pitting, in Proceedings of Minnesorta International Hydraulic Convention (1983), pp. 507–518Google Scholar
  15. 15.
    H. Chanson, Drag reduction in open channel. J. Hydraul. Res. 32(1), 87–101 (1994)CrossRefGoogle Scholar
  16. 16.
    M. Sommerfeld, Particle dispersion in turbulent flow: the effect of particle size distribution. Part. Part. Syst. Charact. 7(1–4), 209–220 (1990)CrossRefGoogle Scholar
  17. 17.
    Y.U. Edel, Guide to protecting spillway structures from cavitation. Power Technol. Eng. (Former. Hydrotech. Constr.) 11(9), 948–949 (1977)CrossRefGoogle Scholar
  18. 18.
    P. Volkart, P. Rutschmann, Rapid flow in spillway chutes with and without deflectors. A model-prototype comparison, in Proceedings of the Symposium on Scale Effects in Modeling Hydraulic Research (1984), pp. 3–6Google Scholar
  19. 19.
    C. Cheng, C. Webster, J. Wong, Cavitation-resistant coatings for concrete hydraulic structures. ACI Mater. J. 87(6), 594–601 (1990)Google Scholar
  20. 20.
    R. Duraiswami, S. Prabhukumar, G.L. Chahine, Bubble counting using an inverse acoustic scattering method. J. Acoust. Soc. Am. 104(5), 2699–2717 (1998)ADSCrossRefGoogle Scholar
  21. 21.
    M. Chudina, Noise as an indicator of cavitation in a centrifugal pump. Acoust. Phys. 49(4), 463–474 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    I. Karassik, T. McGuire, Centrifugal Pumps, 2nd edn. (Pergamon, New York, 1997)CrossRefGoogle Scholar
  23. 23.
    E.A. Brujan, G.S. Keen, A. Vogel, J.R. Blake, The final stage of the collapse of a cavitation bubble close to a rigid boundary. Phys. Fluids 14(1), 85–92 (2002)ADSCrossRefGoogle Scholar
  24. 24.
    T. O’hern et al., Development of an electrical impedance tomography system for an air-water vertical water-column, in Forum on Measurement Techniques in Multiphase Flows ASME (1995), pp. 1–9Google Scholar
  25. 25.
    H. Chanson, Air bubble entrainment in open channels. Flow structure and bubble size distributions. Int. J. Multiph. Flow 23(1), 193–203 (1997)Google Scholar
  26. 26.
    I. Bankman, Handbook of Medical Image Processing and Analysis (s.l.:Academic Press, 2008)Google Scholar
  27. 27.
    R. Kountchev, K. Nakamatsu, New Approaches in Intelligent Image Analysis: Techniques, Methodologies and Applications (Springer, Sofia, 2016)CrossRefGoogle Scholar
  28. 28.
    J.J. Esqueda Elizondo, L.E. Palafox Maestre, s.f. Fundamentos de procesamiento de imágenes (s.l.:Universidad Autónoma de Baja California)Google Scholar
  29. 29.
    MathWorks, Inc, s.f. strel. https://es.mathworks.com/help/images/ref/strel-class.html. Last accessed 19 Dec 2016
  30. 30.
    S. Nagabhushana, Computer Vision and Image Processing (New Age International (P), New Delhi, 2005)Google Scholar
  31. 31.
    H. Badioze Zaman et al., Advances in Visual Informatics (Springer, Bangi, Malaysia, 2015)Google Scholar
  32. 32.
    A. Vedaldi, B. Fulkerson, VLFeat—an open and portable library of computer vision algorithms. http://www.vlfeat.org/ (2008)
  33. 33.
    B. Herbert, T. Tinne, L. Van Gool, SURF: speeded up robust features, in 9th European Conference on Computer Vision (2006), pp. 404–417Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sergio L. Carrasco-Ortiz
    • 1
    Email author
  • Eduardo Valero
    • 1
  • Maria Morant
    • 1
  • Roberto Llorente
    • 1
  1. 1.Nanophotonics Technology Center, Universitat Politècnica de ValènciaValenciaSpain

Personalised recommendations