Advertisement

Miniaturized Surface Plasmon Resonance Based Sensor Systems—Opportunities and Challenges

  • Peter HauslerEmail author
  • Carina Roth
  • Thomas Vitzthumecker
  • Rudolf Bierl
Chapter
  • 15 Downloads
Part of the Springer Series in Optical Sciences book series (SSOS, volume 223)

Abstract

Surface Plasmon Resonance (SPR) is a well-known and established technology in bioanalysis and pharmaceutical sciences. Due to the expensive instrumentation and the need of trained people, it is mainly limited to applications in laboratories. However, there are some areas like environmental monitoring, chemical processing and civil infrastructure, which urgently need new sensor technologies. SPR has the potential to serve these fields. In order to be qualified for a use in these areas SPR has to overcome some hurdles. The instrumentation has to be robust, small in size and cheap. A device, which fits these needs, will be a micro-opto-electro-mechanical system (MOEMS) with integrated intelligent algorithms. In this book chapter, examples of miniaturized SPR devices are introduced, the limitations which have to be overcome as well as the possibilities for future applications are proposed. Due to the manifold advantages of this technology and the dropping prices for imaging sensors, Surface Plasmon Resonance imaging (SPRi) might become one of the leading technologies for SPR smart sensor systems.

References

  1. 1.
    J.F. Masson, Surface plasmon resonance clinical biosensors for medical diagnostics. ACS Sens. 2(1), 16–30 (2017)CrossRefGoogle Scholar
  2. 2.
    P. Singh, SPR biosensors: historical perspectives and current challenges. Sens. Actuators B: Chem. 229, 110–130 (2016)CrossRefGoogle Scholar
  3. 3.
    A. Olaru, C. Bala, N. Jaffrezic-Renault, H.Y. Aboul-Enein, Surface plasmon resonance (SPR) biosensors in pharmaceutical analysis. Crit. Rev. Anal. Chem. 45(2), 97–105 (2015)CrossRefGoogle Scholar
  4. 4.
    C. Liu, F. Hu, W. Yang, J. Xu, Y. Chen, A critical review of advances in surface plasmon resonance imaging sensitivity. TrAC Trends Anal. Chem. (2017)Google Scholar
  5. 5.
    R.B. Schasfoort (ed.), Handbook of Surface Plasmon Resonance. Royal Society of Chemistry (2017)Google Scholar
  6. 6.
    S.G. Nelson, K.S. Johnston, S.S. Yee, High sensitivity surface plasmon resonance sensor based on phase detection. Sens. Actuators B: Chem. 35(1–3), 187–191 (1996)CrossRefGoogle Scholar
  7. 7.
    G.A. Lopez, M.C. Estevez, M. Soler, L.M. Lechuga, Recent advances in nanoplasmonic biosensors: Applications and lab-on-a-chip integration. Nanophotonics 6(1), 123–136 (2017)CrossRefGoogle Scholar
  8. 8.
    M. Puiu, C. Bala, SPR and SPR imaging: Recent trends in developing nanodevices for detection and real-time monitoring of biomolecular events. Sensors 16(6), 870 (2016)CrossRefGoogle Scholar
  9. 9.
    D. Boecker, A. Zybin, K. Niemax, C. Grunwald, V.M. Mirsky, Noise reduction by multiple referencing in surface plasmon resonance imaging. Rev. Sci. Instrum. 79(2), 023110 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    V. Scherbahn, S. Nizamov, V.M. Mirsky, Toward ultrasensitive surface plasmon resonance sensors (2018)Google Scholar
  11. 11.
    P. Hausler, C. Genslein, C. Roth, T. Vitzthumecker, T. Hirsch, R. Bierl, Miniaturized surface plasmon resonance based sensor system, in Proceedings of the 6th International Conference on Photonics, Optics and Laser Technology - Volume 1, Photoptics (2018)Google Scholar
  12. 12.
    C. Rodriguez-Emmenegger, E. Brynda, T. Riedel, M. Houska, V. Šubr, A.B. Alles, E. Hasan, J.E. Gautrot, W.T. Huck, Polymer Brushes Showing Non-Fouling in Blood Plasma Challenge the Currently Accepted Design of Protein Resistant Surfaces. Macromol. Rapid Commun. 32(13), 952–957 (2011)CrossRefGoogle Scholar
  13. 13.
    H. Lísalová, E. Brynda, M. Houska, I. Visova, K. Mrkvova, X.C. Song, E. Gedeonova, F. Surman, T. Riedel, O. Pop-Georgievski, J. Homola, Ultralow-fouling behavior of biorecognition coatings based on carboxy-functional brushes of zwitterionic homo-and copolymers in blood plasma: functionalization matters. Anal. Chem. 89(6), 3524–3531 (2017)Google Scholar
  14. 14.
    J.W. Tomm, A. Jaeger, A. Bärwolff, T. Elsaesser, A. Gerhardt, J. Donecker, Aging properties of high power laser diode arrays analyzed by Fourier-transform photocurrent measurements. Appl. Phys. Lett. 71(16), 2233–2235 (1997)ADSCrossRefGoogle Scholar
  15. 15.
    J.H. Grassi, R.M. Georgiadis, Temperature-dependent refractive index determination from critical angle measurements: Implications for quantitative SPR sensing. Anal. Chem. 71(19), 4392–4396 (1999)CrossRefGoogle Scholar
  16. 16.
    A.N. Naimushin, S.D. Soelberg, D.U. Bartholomew, J.L. Elkind, C.E. Furlong, A portable surface plasmon resonance (SPR) sensor system with temperature regulation. Sens. Actuators B: Chem. 96(1–2), 253–260 (2003)CrossRefGoogle Scholar
  17. 17.
    O. Telezhnikova, J. Homola, New approach to spectroscopy of surface plasmons. Opt. Lett. 31(22), 3339–3341 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    H. Šípová, M. Piliarik, M. Vala, K. Chadt, P. Adam, M. Bocková, K. Hegnerová, J. Homola, Portable surface plasmon resonance biosensor for detection of nucleic acids. Procedia Eng. 25, 148–151 (2011)CrossRefGoogle Scholar
  19. 19.
    T. Brulé, G. Granger, N. Bukar, C. Deschênes-Rancourt, T. Havard, A.R. Schmitzer, R. Martel, J.F. Masson, A field-deployed surface plasmon resonance (SPR) sensor for RDX quantification in environmental waters. Analyst 142(12), 2161–2168 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    B.N. Feltis, B.A. Sexton, F.L. Glenn, M.J. Best, M. Wilkins, T.J. Davis, A hand-held surface plasmon resonance biosensor for the detection of ricin and other biological agents. Biosens. Bioelectron. 23(7), 1131–1136 (2008)CrossRefGoogle Scholar
  21. 21.
    K. Bremer, B. Roth, Fibre optic surface plasmon resonance sensor system designed for smartphones. Opt. Express 23(13), 17179–17184 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    Y. Liu, Q. Liu, S. Chen, F. Cheng, H. Wang, W. Peng, Surface plasmon resonance biosensor based on smart phone platforms. Sci. Rep. 5, 12864 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    H. Guner, E. Ozgur, G. Kokturk, M. Celik, E. Esen, A.E. Topal, S. Ayas, Y. Uludag, C. Elbuken, A. Dana, A smartphone based surface plasmon resonance imaging (SPRi) platform for on-site biodetection. Sens. Actuators B: Chem. 239, 571–577 (2017)CrossRefGoogle Scholar
  24. 24.
    J. Homola, I. Koudela, S.S. Yee, Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison. Sens. Actuators B: Chem. 54(1–2), 16–24 (1999)CrossRefGoogle Scholar
  25. 25.
    J. Montague, Seriously? No kidding. Raspberry Pi, Arduino and other computers on open-source silicon boards are on the way for do-it-yourself monitoring—and even control. Control 30(9), 34–40 (2017)Google Scholar
  26. 26.
    M. Li, Ranking Popular Deep Learning Libraries for Data Science (2017). https://blog.thedataincubator.com/2017/10/ranking-popular-deep-learning-libraries-for-data-science
  27. 27.
    M. Piliarik, J. Homola, Surface plasmon resonance (SPR) sensors: approaching their limits? Opt. Express 17(19), 16505–16517 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    European Machine Vision Association, EMVA standard 1288, standard for characterization of image sensors and cameras. Release 3, 1 (2016)Google Scholar
  29. 29.
    H. Naumann, G. Schröder, M. Löffler-Mang, Handbuch Bauelemente der Optik: Grundlagen, Werkstoffe, Geräte (Carl Hanser Verlag GmbH Co KG, Messtechnik, 2014)CrossRefGoogle Scholar
  30. 30.
    F. Pedrotti, L. Pedrotti, W. Bausch, H. Schmidt, Optik für Ingenieure (Springer, Berlin Heidelberg, 2002)CrossRefGoogle Scholar
  31. 31.
    C.M. Keck, R.H. Müller, Size analysis of submicron particles by laser diffractometry—90% of the published measurements are false. Int. J. Pharm. 355(1–2), 150–163 (2008)CrossRefGoogle Scholar
  32. 32.
    M.J. Weber, Handbook of Optical Materials, vol. 19 (CRC press, 2002)Google Scholar
  33. 33.
    C.J. Lasance, A. Poppe (ed.), Thermal Management for LED Applications (Springer, Berlin, 2016)Google Scholar
  34. 34.
    G. Abbate, U. Bernini, E. Ragozzino, F. Somma, The temperature dependence of the refractive index of water. J. Phys. D Appl. Phys. 11(8), 1167 (1978)ADSCrossRefGoogle Scholar
  35. 35.
    J.R. Janesick, Scientific Charge-Coupled Devices, vol. 83 (SPIE press, 2001)Google Scholar
  36. 36.
    L. Niu, N. Zhang, H. Liu, X. Zhou, W. Knoll, Integrating plasmonic diagnostics and microfluidics. Biomicrofluidics 9(5), 052611 (2015)CrossRefGoogle Scholar
  37. 37.
    Y. Song, D. Cheng, L. Zhao (eds.) Microfluidics: Fundamentals, Devices, and Applications (Wiley, 2018)Google Scholar
  38. 38.
    L. da Fontoura Costa, R.M. Cesar, Shape Classification and Analysis: Theory and Practice (CRC Press, Inc, 2009)Google Scholar
  39. 39.
    T. Klinger, Image Processing with LabVIEW and IMAQ Vision (Prentice Hall Professional, 2003)Google Scholar
  40. 40.
    A. Zybin, D. Boecker, V.M. Mirsky, K. Niemax, Enhancement of the detection power of surface plasmon resonance measurements by optimization of the reflection angle. Anal. Chem. 79(11), 4233–4236 (2007)CrossRefGoogle Scholar
  41. 41.
    S. Nizamov, V. Scherbahn, V.M. Mirsky, Self-referencing SPR-sensor based on integral measurements of light intensity reflected by arbitrarily distributed sensing and referencing spots. Sens. Actuators B: Chem. 207, 740–747 (2015)CrossRefGoogle Scholar
  42. 42.
    S. Nizamov, V.M. Mirsky, Self-referencing SPR-biosensors based on penetration difference of evanescent waves. Biosens. Bioelectron. 28(1), 263–269 (2011)CrossRefGoogle Scholar
  43. 43.
    A.K. Sharma, B.D. Gupta, On the performance of different bimetallic combinations in surface plasmon resonance based fiber optic sensors. J. Appl. Phys. 101(9), 093111 (2007)ADSCrossRefGoogle Scholar
  44. 44.
    B.H. Ong, X. Yuan, S.C. Tjin, J. Zhang, H.M. Ng, Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor. Sens. Actuators B: Chem. 114(2), 1028–1034 (2006)CrossRefGoogle Scholar
  45. 45.
    V. Švorčík, P. Slepička, J. Švorčíková, M. Špírková, J. Zehentner, V. Hnatowicz, Characterization of evaporated and sputtered thin Au layers on poly (ethylene terephthalate). J. Appl. Polym. Sci. 99(4), 1698–1704 (2006)CrossRefGoogle Scholar
  46. 46.
    B.A. Sexton, B.N. Feltis, T.J. Davis, Characterisation of gold surface plasmon resonance sensor substrates. Sens. Actuators A 141(2), 471–475 (2008)CrossRefGoogle Scholar
  47. 47.
    S.A. Zynio, A.V. Samoylov, E.R. Surovtseva, V.M. Mirsky, Y.M. Shirshov, Bimetallic layers increase sensitivity of affinity sensors based on surface plasmon resonance. Sensors 2(2), 62–70 (2002)CrossRefGoogle Scholar
  48. 48.
    D.V. Nesterenko, Z. Sekkat, Surface plasmon sensing with different metals in single and double layer configurations. Appl. Opt. 51(27), 6673–6682 (2012)ADSCrossRefGoogle Scholar
  49. 49.
    L. Pang, G.M. Hwang, B. Slutsky, Y. Fainman, Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor. Appl. Phys. Lett. 91(12), 123112 (2007)ADSCrossRefGoogle Scholar
  50. 50.
    J.F. Masson, M.P. Murray-Méthot, L.S. Live, Nanohole arrays in chemical analysis: manufacturing methods and applications. Analyst 135(7), 1483–1489 (2010)ADSCrossRefGoogle Scholar
  51. 51.
    C. Genslein, P. Hausler, E.M. Kirchner, R. Bierl, A.J. Baeumner, T. Hirsch, Detection of small molecules with surface plasmon resonance by synergistic plasmonic effects of nanostructured surfaces and graphene, in Plasmonics in Biology and Medicine XIV, vol. 10080, p. 100800F. International Society for Optics and Photonics (2017)Google Scholar
  52. 52.
    C. Genslein, P. Hausler, E.M. Kirchner, R. Bierl, A.J. Baeumner, T. Hirsch, Graphene-enhanced plasmonic nanohole arrays for environmental sensing in aqueous samples. Beilstein J. Nanotechnol. 7, 1564 (2016)CrossRefGoogle Scholar
  53. 53.
    M.C. Estevez, M.A. Otte, B. Sepulveda, L.M. Lechuga, Trends and challenges of refractometric nanoplasmonic biosensors: A review. Anal. Chim. Acta 806, 55–73 (2014)CrossRefGoogle Scholar
  54. 54.
    D. Herbert, Batch to Continuous. Control 22(9), 48–55 (2009)Google Scholar
  55. 55.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Peter Hausler
    • 1
    Email author
  • Carina Roth
    • 1
  • Thomas Vitzthumecker
    • 1
  • Rudolf Bierl
    • 1
  1. 1.Sensorik-ApplikationsZentrum, Ostbayerische Technische Hochschule RegensburgRegensburgGermany

Personalised recommendations