Advertisement

Reliability Challenges of Nanoscale Avalanche Photodiodes for High-Speed Fiber-Optic Communications

  • Jack Jia-Sheng HuangEmail author
  • Yu-Heng Jan
  • H. S. Chang
  • C. J. Ni
  • Emin Chou
  • S. K. Lee
  • H. S. Chen
  • Jin-Wei Shi
Chapter
  • 12 Downloads
Part of the Springer Series in Optical Sciences book series (SSOS, volume 223)

Abstract

Photodetectors in optical systems work in a similar manner like human eyes. Optical detectors can detect signals from light sources and provide feedback to the networks. Modern nanoscale semiconductor photodetectors are indispensable components for various high-speed optical networks in the applications of datacenter, wireless, fiber-to-the-premises, and telecommunication. In this chapter, we focus on the state-of-the-art 2.5G, 10G, and 25G avalanche photodiodes and compare the feature size in each generation. We present brief overview of the key device performance of avalanche photodiodes including avalanche breakdown voltage, dark current, temperature stability, bandwidth, and sensitivity. We also discuss reliability implications associated with device miniaturization. During device shrinking, increasingly high electric field is likely to impose most reliability risk. We discuss the reliability challenges of nanoscale photodetectors in terms of optical/electrical overload stress, wear-out degradation, and electrostatic discharge.

Keywords

Semiconductor photodetectors Avalanche photodiodes Photodetectors InGaAs/InAlAs APD III-V photodetectors Nanophotonics Reliability Temperature dependence Device miniaturization 

References

  1. 1.
    D.B. Judd, G. Wyszecki, Color in Business, Science and Industry. Wiley Series in Pure and Applied Optics, 3rd edn. (Wiley-Interscience, New York, 1975)Google Scholar
  2. 2.
    B.E.A.Saleh, and M.C. Teich, Fundamentals of PHOTonics, 2nd edn. (Wiley-Interscienc, New York, 2007)Google Scholar
  3. 3.
    H.J. Haugan, S. Elhamri, F. Szmulowicz, B. Ullrich, G.J. Brown, W.C. Mitchel, Study of residual background carriers in midinfrared InAs∕GaSb superlattices for uncooled detector operation. Appl. Phys. Lett. 92(7), 071102 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    M. Fukuda, Optical Semiconductor Devices, Chapter 4 “Photodiodes” (Wiley, New York, 1999)Google Scholar
  5. 5.
    J.C. Campbell, Recent advances in avalanche photodiodes. J. Lightwave Tech. 34(2), 278–285 (2016)Google Scholar
  6. 6.
    J.S. Huang, H.S. Chang, Y.H. Jan, H.S. Chen, C.J. Ni, E. Chou, Temperature dependence study of mesa-type InGaAs/InAlAs avalanche photodiode characteristics. Adv. Optoelectron. Article ID 2084621, 1–5 (2017)Google Scholar
  7. 7.
    Y.H. Chen, J.M. Wun, S.L. Wu, R.L. Chao, Jack J.S. Huang, Y.H. Jan, H.S. Chen, C.J. Ni, H.S. Chang, E. Chou, J.W. Shi, Top-illuminated In0.52Al0.48As-based avalanche photodiode with dual charge layers for high-speed and low dark current performances. J. Sel. Top. Quantum Electron. 24(2), 3800208 (2018)Google Scholar
  8. 8.
    M. Nada, Y. Muramoto, H. Yokoyama, T. Ishibashi, S. Kodama, InAlAs APD with high multiplied responsivity-bandwidth product (MR-bandwidth product) of 168 A/W·GHz for 25 Gbit/s high-speed operations. Electron. Lett. 48(7), 397–399 (2012)Google Scholar
  9. 9.
    M. Huang, P. Cai, Su Li, L. Wang, T-I Su, L. Zhao, W. Chen, C-Y Hong, D. Pan, Breakthrough of 25 Gb/s Germanium on Silicon Avalanche Photodiode. Optical Fiber Communications Conference, Technical Digest, paper Tu2D.2 (OFC, Anaheim, CA, 2016)Google Scholar
  10. 10.
    E. Ishimura, E. Yagyu, M.N. Kaji, S. Ihara, K. Yoshiara, T. Aoyaji, Y. Tokuda, T. Ishikawa, Degradation mode analysis on highly reliable guardring-free planar InAlAs avalanche photodiode. J. Lightwave Tech. 25(12), 3686–3693 (2007)Google Scholar
  11. 11.
    J.S. Huang, Y.H. Jan, Environmental Engineering of Photonic and Electronic Reliabilities: from Technology and Energy Efficiency Perspectives (Scholars’ Press, Saarbrücken, Germany, 2017)Google Scholar
  12. 12.
    J.S. Huang, H.S. Chang, Y.H. Jan, H.S. Chen, C.J. Ni, E. Chou, S.K. Lee, J.-W. Shi, Highly Reliable, Cost-Effective and Temperature-Stable Top-Illuminated Avalanche Photodiode (APD) for 100G Inter-Datacenter ER4-Lite Applications, PHOTOPTICS (Funchal, Portugal, 2018), pp. 119–124Google Scholar
  13. 13.
    Nokia mobile anyhaul, Nokia White Paper, 2017Google Scholar
  14. 14.
  15. 15.
  16. 16.
  17. 17.
  18. 18.
    C.F. Lam, Passive Optical Networks: Principles and Practice (San Diego, Elsevier, 2007)Google Scholar
  19. 19.
    G. Kramer, Ethernet Passive Optical Networks (McGraw-Hill Communications Engineering, 2005)Google Scholar
  20. 20.
    Y. Miyazaki, T. Yamatoya, K. Matsumoto, K. Kuramoto, K. Shibata, T. Aoyagi, T. Ishikawa, High-power ultralow-chirp 10-Gb/s electroabsorption modulator integrated laser with ultrashort photocarrier lifetime. IEEE J. Quantum Electron. 42(4), 357–62 (2006)Google Scholar
  21. 21.
    Y. Cheng, J. Pan, Y. Wang, F. Zhou, B. Wang, L. Zhao, H. Zhu, W. Wang, 40-Gb/s low chirp electroabsorption modulator integrated with DFB laser. IEEE Photon. Tech. Lett. 21(6), 356–358 (2009)Google Scholar
  22. 22.
    J.W. Raring, L.A. Johansson, E.J. Skogen, M.N. Sysak, H.N. Poulsen, S.P. DenBaars, L.A. Coldren, 40-Gb/s widely tunable low-drive-voltage electroabsorption-modulated transmitters. J. Lightwave Tech. 25(1), 239–348 (2007)Google Scholar
  23. 23.
    Y. Miyazaki, H. Tada, S. Tokizaki, K. Takagi, Y. Hanamaki, T. Aoyagi, Y. Mitsui, +1 dBm average optical output power operation of small-chirp 40-Gbps electroabsorption modulator with tensile-strained asymmetric quantum-well absorption layer. IEEE J. Quantum Electron. 39(8), 1009–1017 (2003)Google Scholar
  24. 24.
    G.M. Smith, K.A. McIntosh, J.P. Donnely, J.E. Funk, L.J. Mahoney, S. Verghese, Reliable InP-based Geiger-mode avalanche photodiode array. Proc. SPIE 7320, 1–10 (2009)Google Scholar
  25. 25.
    J.S. Huang, Y.H. Jan, H.S. Chen, H.S. Chang, C.J. Ni, E. Chou, Predictive reliability model of 10G/25G mesa-type avalanche photodiode degradation. Appl. Phys. Res. 8(3), 66–74 (2016)Google Scholar
  26. 26.
    J.S. Huang, Y.H. Jan, H.S. Chang, C.J. Ni, E. Chou, S.K. Lee, H.S. Chen, J.W. Shi, Nanoscale III-V semiconductor photodetectors for high-speed optical communications, Chapter 3, in Two-dimensional materials for photodetector, ed. by P. K. Nayak. (Rijeka, Croatia, InTech Open, 2018), pp. 49–73. ISBN 978-953-51-3952-2Google Scholar
  27. 27.
    H.C. Neitzert, V. Cappa, R. Crovato, Influence of the device geometry and inhomogeneity on the electrostatic discharge sensitivity of InGaAs/InP avalanche photodiode, in EOS/ESD Symposium (Santa Clara, CA, 1997)Google Scholar
  28. 28.
    M. Nada, T. Yoshimatsu, Y. Muramoto, H. Yokoyama, H. Matsuzaki, Design and performance of high-speed avalanche photodiodes for 100-Gb/s systems and beyond. IEEE/OSA J. Lightwave Technol. 33(5), 984–990 (2015)Google Scholar
  29. 29.
    C.L.F. Ma, M.J. Deen, L.E. Tarof, J. Yu, Modelling of breakdown voltage and its temperature dependence in SAGCM InP/InGaAs avalanche photodiodes, in IEEE Electron Devices Meeting (IEDM, San Francisco, 1994), pp. 22.5.1–22.5.4Google Scholar
  30. 30.
    J.S. Huang, H.S. Chang, and Y.H. Jan, “Reliability challenges of nanoscale avalanche photodiodes”, Open Access J. Photoenergy, (2017), p. 0015Google Scholar
  31. 31.
    C.R. Viswanathan, Physical Principles of Semiconductor Devices (EE Class Note, UCLA, 1993), pp. 172–208Google Scholar
  32. 32.
    C. Hu, PN and metal-semiconductor junctions, in UC, Berkeley, EE Class Note, Chapter 4 (2009), pp.89–156Google Scholar
  33. 33.
    T. Bendib, L. Pancheri, F. Dieffal, G.-F.D. Betta, Impact of temperature and doping concentration on avalanche photodiode characteristics. in Proceed. World Congress Engineering, vol. I (WCE, London, 2014), pp. 5–8Google Scholar
  34. 34.
    D.J. Massey, J.P.R. David, G.J. Rees, Temperature dependence of impact ionization in submicronmeter silicon devices. IEEE Tran. Electron Dev. 53, 2328–2334 (2006)ADSCrossRefGoogle Scholar
  35. 35.
    L.L.J. Tan, D.S.G. Ong, J.S. Ng, C.H. Tan, S.K. Jone, Y. Qian, J.P.R. David, Temperature dependence of avalanche breakdown in InP and InAlAs. IEEE J. Quantum. Electron. 46(8), 1153–1157 (2010)Google Scholar
  36. 36.
    M.S. Tyagi, Zener and avalanche breakdown in silicon alloyed p-n junctions. Solid State Electron. 11, 99–128 (1968)ADSCrossRefGoogle Scholar
  37. 37.
    J.S. Laird, T. Hirao, S. Onoda, H. Ohyama, T. Kamiya, Heavy-ion induced single-event transients in high-speed InP-InGaAs avalanche photodiodes. IEEE Trans. Nuclear Sci. 50(6), 2225–2232 (2003)Google Scholar
  38. 38.
    A. Alpert, High-speed jitter testing of XFP transceivers, in Viavi White Paper (2015)Google Scholar
  39. 39.
    A.S. Oates, Reliability of silicon integrated circuits. Chapter 7 in Reliability Characterisation of Electrical and Electronic Systems, ed. by J. Swingler (Woodhead Publishing, Cambridge, 2015)Google Scholar
  40. 40.
    C.V. Thompson, J.R. Lloyd, Electromigration and IC interconnects. MRS Bull. 19–25 (1993)Google Scholar
  41. 41.
    J. Proost, K. Maex, L. Delaey, Electromigration-induced drift in damascene and plasma-etched Al(Cu). II. Mass transport mechanisms in bamboo interconnects. J. Appl. Phys. 87, 99–109 (2000)ADSCrossRefGoogle Scholar
  42. 42.
    A.S. Oates, M.H. Lin, Electromigration failure distributions of Cu/low-k dual-damascene vias: impact of the critical current density and a new reliability extrapolation methodology. IEEE Trans. Dev. Mater. Rel. 9(2), 244–254 (2009)Google Scholar
  43. 43.
    K.L. Lee, C.K. Hu, K.N. Tu, In-situ scanning electron microscope comparison studies on electromigration of Cu and Cu(Sn) alloys for advanced chip interconnects. J. Appl. Phys. 78, 4428–4437 (1995)ADSCrossRefGoogle Scholar
  44. 44.
    Hu Chenming, Modern Semiconductor Devices for Integrated Circuits (Pearson Education, New York, 2009)Google Scholar
  45. 45.
    J.W. McPherson, Time dependent dielectric breakdown physics-models revisited. Microelectron. Reliab. 52, 1753–1760 (2012)CrossRefGoogle Scholar
  46. 46.
    K.N. Tu, Recent advances on electromigration in very-large-scale-integration of interconnects. J. Appl. Phys. 94(9), 5451–5173 (2003)Google Scholar
  47. 47.
    M. Yunus, K. Srihari, J.M. Pitarresi, A. Primavera, Effect of voids on the reliability of BGA/CSP solder joints. Microelectron. Reliab. 43, 2077–2086 (2003)CrossRefGoogle Scholar
  48. 48.
    A. Topol, D.C.L. Tulipe, L. Shi, D. Frank, K. Bernstein, S. Steen, A. Kumar, G. Singco, A. Young, K. Guarini, Three-dimensional integrated circuits. IBM J. Res. Develop. 50(4/5), 491–506 (2006)CrossRefGoogle Scholar
  49. 49.
    Y.J. Chang, C.T. Ko, K.N. Chen, Electrical and reliability investigation of Cu TSVs with low-temperature Cu/Sn and BCB hybrid bond scheme. IEEE Electron Dev. Lett. 34(1), 102–104 (2013)Google Scholar
  50. 50.
    Y. Ma, Y. Zhang, Y. Gu, X. Chen, Y. Shi, W. Ji, S. Xi, B. Du, X. Li, H. Tang, Y. Li, J. Fang, Impact of etching on the surface leakage generation in mesa-type InGaAs/InAlAs avalanche photodetectors. Op. Express 24(7), 7823–7834 (2016)Google Scholar
  51. 51.
    H. Sudo, M. Suzuki, Surface degradation mechanism of InP/InGaAs APD’s. J. Lightwave Tech. 6(10), 1496–1501 (1988)Google Scholar
  52. 52.
    U.R. Bandi, M. Dasaka, P.K. Kumar, Design-in reliability for communication designs, in 43rd ACM/IEEE Design Automation Conference (San Francisco, CA, 2006)Google Scholar
  53. 53.
    J.S. Huang, Design-in reliability of modern wavelength-division multiplex (WDM) distributed feedback (DFB) lasers. Appl. Phys. Res. 4(2), 15–28 (2012)Google Scholar
  54. 54.
    P.S. Ho, T. Kwok, Electromigration in metals. Rep. Prog. Phys. 52(3), 304–348 (1989)Google Scholar
  55. 55.
    J.S. Huang, T.L. Shofner, J. Zhao, Direct observation of void morphology in step-like electromigration resistance behavior and its correlation with critical current density. J. Appl. Phys. 89(4), 2130–2133 (2001)Google Scholar
  56. 56.
    E. Ishimura, E. Yagyu, M. Nakaji, S. Ihara, K. Yoshiara, T. Aoyagi, Y. Tokuda, T. Ishikawa, Degradation mode analysis on highly reliable guardring-free planar InAlAs avalanche photodiodes. J. Lightwave Tech.25(12), 3686–3693 (2007)Google Scholar
  57. 57.
    A.A. Efremov, N.I. Bochkareva, R.I. Gorbunov, D.A. Lavrinovich, Y.T. Rebane D.V. Tarkhin, Y.G. Shreter, Effect of the joule heating on the quantum efficiency and choice of thermal conditions for high-power blue InGaN/GaN LEDs. Phys. Semi. Device 40(5), 605–610 (2006)Google Scholar
  58. 58.
    J.S. Huang, Reliability of optoelectronics. Chapter 6 in Reliability Characterisation of Electrical and Electronic Systems (Cambridge, UK: Woodhead Publishing, 2015)Google Scholar
  59. 59.
    G.K. Wachutka, Rigorous thermodynamic treatment of heat generation and conduction in semiconductor device modeling. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 9(11), 1141–1149 (1990)Google Scholar
  60. 60.
    K.N. Tu, Y. Liu, M. Li, Effect of Joule heating and current crowding on electromigration in mobile technology. Appl. Phys. Rev. 4, 011101 (2017)ADSCrossRefGoogle Scholar
  61. 61.
    K.N. Tu, C.C. Yeh, C.Y. Liu, C. Chen, Effect of current crowding on vacancy diffusion and void formation in electromigration. Appl. Phys. Lett. 76(8), 988–990 (2000)Google Scholar
  62. 62.
    E.C.C. Yeh, W.J. Choi, K.N. Tu, Current crowding-induced electromigration in flip chip solder joints. Appl. Phys. Lett. 80(4), 580–282 (2001)Google Scholar
  63. 63.
    J.S. Huang, E.C.C. Yeh, Z.B. Zhang, K.N. Tu, The effect of contact resistance on current crowding and electromigration in ULSI interconnects. Mater. Chem. Phys. 77(2), 377–383 (2002)Google Scholar
  64. 64.
    J.S. Huang, Y.H. Jan, H.S. Chang, J. Chang, R. Chang, G. Liu, D. Ren, E. Chou, ESD polarity effect study of monolithic, integrated DFB-EAM EML for 100/400G optical networks. CLEO-PR (Singapore, July31-Aug.4, 2017). Paper#1018Google Scholar
  65. 65.
  66. 66.
    M.A. Saleh, M.M. Hayat, O.H. Kwon, A.L. Holmes, J.C. Campbell, B.E.A. Saleh, M.C. Teich, Breakdown voltage in thin III-V avalanche photodiodes. Appl. Phys. Lett. 79(24), 4037–4039 (2001)Google Scholar
  67. 67.
    J.R. Black, Electromigration failure modes in aluminum metallization for semiconductor devices. Proc. IEEE 57(9), 1587–1594 (1969)Google Scholar
  68. 68.
    J.S. Huang, Temperature and current dependences of reliability degradation of buried heterostructure semiconductor lasers. IEEE Trans. Device Mater. Rel. 5(1), 150–154 (2005)Google Scholar
  69. 69.
    Generic reliability assurance requirements for optoelectronic devices used in telecommunication equipment. Telcordia, GR-468-CORE (2004)Google Scholar
  70. 70.
    J.S. Huang, T. Olson, E. Isip, Human-body-model electrostatic discharge and electrical overstress studies of buried heterostructure semiconductor lasers. IEEE Trans. Device Mater. Rel. 7(4), 453–461 (2007)Google Scholar
  71. 71.
    J.S. Huang, H. Lu, Size effect on ESD threshold and breakdown behavior of InP buried heterostructure semiconductor lasers. Open Appl. Phys. J. 2, 5–10 (2009)ADSCrossRefGoogle Scholar
  72. 72.
    S.J. Chang et al., Improved ESD protection by combining InGaN-GaN MQW LEDs with GaN Schottky diodes. IEEE Electron Device Lett. 24(3), 129–131 (2003)Google Scholar
  73. 73.
    Y.K. Su, S.J. Chang, S.C. Wei, S.M. Chen, W.L. Li, ESD engineering of nitride-based LEDs. IEEE Trans. Device Mater. Rel. 5(2), 277–281 (2005)Google Scholar
  74. 74.
    J. Weinlein, D. Sanchez, J. Salas, Electrostatic discharge (ESD) protection for a laser diode ignited actuator, in Sandia Report (2003), pp. 1–17Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jack Jia-Sheng Huang
    • 1
    • 2
    Email author
  • Yu-Heng Jan
    • 2
    • 1
  • H. S. Chang
    • 2
  • C. J. Ni
    • 2
  • Emin Chou
    • 2
  • S. K. Lee
    • 2
  • H. S. Chen
    • 2
  • Jin-Wei Shi
    • 3
  1. 1.Source PhotonicsWest HillsUSA
  2. 2.Source PhotonicsHsinchuTaiwan
  3. 3.Department of Electrical EngineeringNational Central UniversityZhongliTaiwan

Personalised recommendations