Advertisement

A Dual-Wavelength Widely Tunable C-Band SOA-Based Fiber Laser for Continuous Wave Terahertz Generation

  • Muhammad UmmyEmail author
  • Abdullah Hossain
  • Simeon Bikorimana
  • Roger Dorsinville
Chapter
  • 7 Downloads
Part of the Springer Series in Optical Sciences book series (SSOS, volume 223)

Abstract

There have been several breakthroughs in terahertz science and technology. Major recent advances have brought novel avenues for terahertz generation to the limelight. Research work pertaining to terahertz generation and its applications has expanded at an unprecedented rate. This encompassing review provides a detailed description of current means of terahertz generation with a special focus on optical sources. Finally, a specific recent development utilizing a novel dual-wavelength, C-band, SOA-based, fiber hybrid compound-ring resonator source is discussed. Boasting both single and dual-port operation, this source is utilized to excite a terahertz photo-mixer and achieves a difference wavelength tuning range of 20.42 nm (i.e., 2.51 THz) which corresponds to a terahertz radiation range of 0.8–2.51 THz at room temperature.

References

  1. 1.
    W. Chan, J. Deibel, D. Mittleman, Imaging with terahertz radiation. Rep. Prog. Phys. 70, 1325–1379 (2007)CrossRefADSGoogle Scholar
  2. 2.
    M.A. Ummy, S. Bikorimana, A. Hossain, R. Dorsinville, Continuous tunable terahertz wave generation via a novel CW optical beat laser source, in Paper presented at the 6th International Conference on Photonics, Optics, and Laser Technology, Funchal, Madeira, Portugal, 25–27 Jan 2018Google Scholar
  3. 3.
    E. Pickwell, V. Wallace, Biomedical applications of terahertz technology. J. Phys. D Appl. Phys. 39(17), R301–R310 (2006)CrossRefADSGoogle Scholar
  4. 4.
    N. Karpowicz, H. Zhong, J. Xu et al., Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging. Semicond. Sci. Technol. 20(7), S293 (2005)CrossRefGoogle Scholar
  5. 5.
    B. Hu, M.C. Nuss, Imaging with terahertz waves. Opt. Lett. 20(16), 1716–1718 (1995)CrossRefADSGoogle Scholar
  6. 6.
    M. Yamashita, K. Kawase, C. Otani, T. Kiwa, M. Tonouchi, Imaging of large-scale integrated circuits using laser terahertz emission microscopy. Opt. Express 13(1), 115–120 (2005)CrossRefADSGoogle Scholar
  7. 7.
    C. Thacker, A. Cooray, J. Smidt et al., H-ATLAS: the cosmic abundance of dust from the far-infrared background power spectrum. Astrophys. J. 768(1), 58 (2013)CrossRefADSGoogle Scholar
  8. 8.
    V.M. Zolotarev, R.K. Mamedov, A.N. Bekhterev, B.Z. Volchek, Spectral emissivity of a globar lamp in the 2–50-μm region. J. Opt. Technol. 74, 378–384 (2007)CrossRefGoogle Scholar
  9. 9.
    K. Charrada, G. Zissis, M. Aubes, Two-temperature, two-dimensional fluid modelling of mercury plasma in high-pressure lamps. J. Phys. D Appl. Phys. 29, 2432–2438 (1996)CrossRefADSGoogle Scholar
  10. 10.
    B.A. Knyazev, G.N. Kulipanov, N.A. Vinokurov, Novosibirsk terahertz free electron laser: instrumentation development and experimental achievements. Meas. Sci. Technol. 21, 054017 (2010)CrossRefADSGoogle Scholar
  11. 11.
    M. Mineo, C. Paoloni, Corrugated rectangular waveguide tunable back-ward wave oscillator for terahertz applications. IEEE Trans. Electron Devices 57, 1481–1484 (2010)CrossRefADSGoogle Scholar
  12. 12.
    J.M. Byrd, W.P. Leemans, A. Loftsdottir, B. Marcelis, M.C. Martin, W.R. McKinney, F. Sannibale, T. Scarvie, C. Steier, Observation of broadband self-amplified spontaneous coherent terahertz synchrotron radiation in a storage ring. Phys. Rev. Lett. 89, 224801 (2002)CrossRefADSGoogle Scholar
  13. 13.
    V.L. Bratman, Y.K. Kalynov, V.N. Manuilov, Large-orbit gyrotron operation in the terahertz frequency range. Phys. Rev. Lett. 102, 245101 (2009)CrossRefADSGoogle Scholar
  14. 14.
    S. Bhattacharjee, J.H. Booske, C.L. Kory et al., Folded waveguide traveling-wave tube sources for terahertz radiation. IEEE Trans. Plasma Sci. 32, 1002–1014 (2004)CrossRefADSGoogle Scholar
  15. 15.
    J. Lusakowski, W. Knap, N. Dyakonova et al., Voltage tuneable terahertz emission from a ballistic nanometer InGaAs/InAlAs transistor. J. Appl. Phys. 97, 064307 (2005)CrossRefADSGoogle Scholar
  16. 16.
    S. Pérez, T. González, D. Pardo, J. Mateos, Terahertz Gunn-like oscillations in InGaAs/InAlAs planar diodes. J. Appl. Phys. 103, 094516 (2008)CrossRefADSGoogle Scholar
  17. 17.
    J.V. Siles, J. Grajal, Physics-based design and optimization of Schottky diode frequency multipliers for terahertz applications. IEEE Trans. Microw. Theor. Technol. 58, 1933–1942 (2010)CrossRefADSGoogle Scholar
  18. 18.
    E.N. Harvey, The luminescence of adhesive tape. Science 89, 460–461 (1939)CrossRefADSGoogle Scholar
  19. 19.
    E.N. Harvey, The luminescence of sugar wafers. Science 90, 35–36 (1939)CrossRefADSGoogle Scholar
  20. 20.
    D.S. Ong, H.L. Hartnagel, Generation of THz signals based on quasi-ballistic electron reflections in double-heterojunction structures. Semicond. Sci. Technol. 22, 981 (2007)CrossRefADSGoogle Scholar
  21. 21.
    M.A. Odnoblyudov, A.A. Prokofiev, I.N. Yassievich, K.A. Chao, Theory of a strained p-Ge resonant-state terahertz laser. Phys. Rev. B. 70, 115209 (2004)CrossRefADSGoogle Scholar
  22. 22.
    Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H.E. Beere, D.A. Ritchie, S.P. Khanna, E.H. Linfield, A.G. Davies, Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions. Nature 457, 174–178 (2009)CrossRefADSGoogle Scholar
  23. 23.
    B.S. Williams, Terahertz quantum-cascade lasers. Nature Photon. 1, 517–525 (2007)CrossRefADSGoogle Scholar
  24. 24.
    F. Klappenberger, K.F. Renk, Transient-pulse nonlinear spectroscopy with the radiation of a multimode THz gas laser. Int. J. Infrared Millimeter Waves 24, 1405 (2003)CrossRefGoogle Scholar
  25. 25.
    V.A. Gorobets, B.F. Kuntsevich, V.O. Petukhov, Absorption by CS2 molecules on “hot” band emission lines from a TEA CO2 laser. J. Appl. Spectrosc. 74, 67 (2007)CrossRefADSGoogle Scholar
  26. 26.
    G. Dodel, On the history of far-infrared (FIR) gas lasers: Thirty-five years of research and application. Infrared Phys. Technol. 40, 127–139 (1999)CrossRefADSGoogle Scholar
  27. 27.
    K.A. McIntosh, E.R. Brown, K.B. Nichols, O.B. McMahon, W.F. DiNatale, T.M. Lyszczarz, Terahertz photomixing with diode lasers in low-temperature-grown GaAs. Appl. Phys. Lett. 67, 3844 (1995)CrossRefADSGoogle Scholar
  28. 28.
    M. Tani, P. Gu, M. Hyodo, K. Sakai, T. Hidaka, Generation of coherent terahertz radiation by photomixing of dual-mode lasers. Opt. Quantum Electron. 32, 503–520 (2000)CrossRefGoogle Scholar
  29. 29.
    M. Scheller, J.M. Yarborough, J.V. Moloney, M. Fallahi, M. Koch, S.W. Koch, Room temperature continuous wave milliwatt terahertz source. Opt. Express 18, 27112–27117 (2010)CrossRefADSGoogle Scholar
  30. 30.
    K.L. Vodopyanov, Optical generation of narrow-band terahertz packets in periodically inverted electro-optic crystals: conversion efficiency and optimal laser pulse format. Opt. Expr. 14, 2263–2276 (2006)CrossRefADSGoogle Scholar
  31. 31.
    J.A. Fülöp, L. Pálfalvi, G. Almási, J. Hebling, Design of high-energy terahertz sources based on optical rectification. Opt. Express 18, 12311–12327 (2010)CrossRefADSGoogle Scholar
  32. 32.
    D.H. Auston, Picosecond optoelectronic switching and gating in silicon. Appl. Phys. Lett. 26, 101–103 (1975)CrossRefADSGoogle Scholar
  33. 33.
    Y.C. Shen, P.C. Upadhya, E.H. Linfield, H.E. Beere, A.G. Davies, Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters. Appl. Phys. Lett. 83, 3117–3119 (2003)CrossRefADSGoogle Scholar
  34. 34.
    M. Kress, T. Löffler, S. Eden, M. Thomson, H.G. Roskos, Terahertz-pulse generation by photoionization of air with laser pulses composed of both fundamental and second-harmonic waves. Opt. Lett. 29, 1120–1122 (2004)CrossRefADSGoogle Scholar
  35. 35.
    Y. Chen, M. Yamaguchi, M. Wang, X.C. Zhang, Terahertz pulse generation from noble gases. Appl. Phys. Lett. 91, 251116 (2007)CrossRefADSGoogle Scholar
  36. 36.
    J.I. Shikata, M. Sato, T. Taniuchi, H. Ito, K. Kawase, Enhancement of terahertz-wave output from LiNbO3 optical parametric oscillators by cryogenic cooling. Opt. Lett. 24, 202–204 (1999)CrossRefADSGoogle Scholar
  37. 37.
    C. Janke, M. Forst, H. Nagel et al., Asynchronous optical sampling for high-speed characterization of integrated resonant terahertz sensors. Opt. Lett. 30(11), 1405–1407 (2005)CrossRefADSGoogle Scholar
  38. 38.
    S. Preu, G.H. Dohler, S. Malzer, L.J. Wang, A.C. Gossard, Tunable, continuous-wave terahertz photomixer sources and applications. J. Appl. Phys. 109(6), 4 (2011)CrossRefGoogle Scholar
  39. 39.
    N. Kim, J. Shin, E. Sim et al., Monolithic dual-mode distributed feedback semiconductor laser for tunable continuous-wave terahertz generation. Opt. Express 17(16), 13851–13859 (2009)CrossRefADSGoogle Scholar
  40. 40.
    S. Kumar, Recent progress in terahertz quantum cascade lasers. IEEE J. Sel. Top. Quantum Electron. 17(1), 38–47 (2011)CrossRefADSGoogle Scholar
  41. 41.
    M. Fischer, G. Scalari, C. Walther, J. Faist, Terahertz quantum cascade lasers based on In0.53Ga0.47As/In0.52Al0.48As/InP. J. Crystal Growth 311(7):1939–1943 (2009)Google Scholar
  42. 42.
    M.Y. Frankel, R.D. Esman, Optical single sideband suppressed carrier modulator for wide-band signal processing. J. Lightwave Technol. 16(5), 859 (1998)CrossRefADSGoogle Scholar
  43. 43.
    P. Gu, F. Chang, M. Tani, K. Sakai, C.L. Pan, Generation of coherent cw-terahertz radiation using a tunable dual-wavelength external cavity laser diode. Jpn. J. Appl. Phys. 38(11A), L1246 (1999)CrossRefADSGoogle Scholar
  44. 44.
    N. Kim, S.P. Han, H. Ko, et al., Tunable continuous-wave terahertz generation/detection with compact 1.55 um detuned dual-mode laser diode and InGaAs based photomixer. Optics Expr. 19(16):13851–13859 (2011)Google Scholar
  45. 45.
    O. Morikawa, M. Tonouchi, M. Tani, K. Sakai, M. Hangyo, Sub-THz emissions properties of photoconductive antennas excited with multimode laser diode. Jpn. J. Appl. Phys. 38(3R), 1388 (1999)CrossRefADSGoogle Scholar
  46. 46.
    M.A. Belkin, F. Capasso, F. Xie et al., Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation. Appl. Phys. Lett. 92(20), 201101 (2008)CrossRefADSGoogle Scholar
  47. 47.
    S. Mickan, D. Abbot, J. Munch et al., Analysis of system trade-offs for terahertz imaging. Microelectron. J. 31(7), 503–514 (2000)CrossRefGoogle Scholar
  48. 48.
    J.T. Darrow, X.C. Zhang, D.H. Auston, Power scaling of large-aperture photoconducting antennas. Appl. Phys. Lett. 58, 25 (1991)CrossRefADSGoogle Scholar
  49. 49.
    J.T. Darrow, X.C. Zhang, D.H. Auston, J.D. Morse, Saturation properties of large-aperture photoconducting antennas. IEEE J. Quantum Electron. 28(6), 1607 (1992)CrossRefADSGoogle Scholar
  50. 50.
    F.W. Smith, A.R. Calawa, C.L. Chen et al., New MBE buffer used to eliminate backgating in GaAs MESFETs. IEEE Electron Device Lett. 9(2), 77 (1988)CrossRefADSGoogle Scholar
  51. 51.
    K.C. Zhang, D.H. Auston, Optoelectronic measurement of semiconductor surfaces and interfaces. J. Appl. Phys. 71, 326 (1992)CrossRefADSGoogle Scholar
  52. 52.
    T. Dekorsy, T. Pfeifer, W. Kutt, H. Kurz, Subpicosecond carrier transport in GaAs surface-space-charge fields. Phys. Rev. B. 47, 3842 (1993)CrossRefADSGoogle Scholar
  53. 53.
    J.N. Heyman, P. Neocleous, D. Hebert, P.A. Crowell, T. Müller, K. Unterrainer, Terahertz emission from GaAs and InAs in a magnetic field. Phys. Rev. B. 64:085202 (2001)Google Scholar
  54. 54.
    H. Hamster, A. Sullivan, S. Gordon, W. White, R.W. Falcone, Subpicosecond, electromagnetic pulses from intense laser-plasma interaction. Phys. Rev. Lett. 71, 2725 (1993)CrossRefADSGoogle Scholar
  55. 55.
    W.P. Leemans, C.G.R. Geddes, J. Faure et al., Observation of terahertz emission from a laser-plasma accelerated electron bunch crossing a plasma-vacuum boundary. Phys. Rev. Lett. 91, 074802 (2003)CrossRefADSGoogle Scholar
  56. 56.
    A.M. Bystrov, N.V. Vvedenskii, V.B. Gildenburg, Generation of terahertz radiation upon the optical breakdown of a gas. JETP Lett. 82, 753 (2005)CrossRefADSGoogle Scholar
  57. 57.
    D.J. Cook, R.M. Hochstrasser, Intense terahertz pulses by four-wave rectification in air. Opt. Lett. 25(16), 1210–1212 (2000)CrossRefADSGoogle Scholar
  58. 58.
    X. Xie, J. Dai, X.C. Zhang, Coherent control of THz wave generation in ambient air. Phys. Rev. Lett. 96(7), 75005 (2006)CrossRefADSGoogle Scholar
  59. 59.
    J. Dai, X. Xie, X.C. Zhang, Detection of broadband terahertz waves with a laser-induced plasma in gases. Phys. Rev. Lett. 97, 103903 (2006)CrossRefADSGoogle Scholar
  60. 60.
    J. Dai, Laser air photonics: beyond the terahertz gap. Mater. Today 15, 52 (2012)Google Scholar
  61. 61.
    K. Wynne, J.J. Carey, An integrated description of terahertz generation through optical rectification, charge transfer, and current surge. Opt. Commun. 256, 400 (2005)CrossRefADSGoogle Scholar
  62. 62.
    J.J. Carey, R.T. Bailey, D. Pugh et al., Terahertz pulse generation in an organic crystal by optical rectification and resonant excitation of molecular charge transfer. Appl. Phys. Lett. 81, 4335 (2002)CrossRefADSGoogle Scholar
  63. 63.
    J. Xu, A.B. Stickrath, P. Bhattacharya et al., Direct measurement of the photoelectric response time of bacteriorhodopsin via electro-optic sampling. Biophys. J. 85(2), 1128 (2003)CrossRefGoogle Scholar
  64. 64.
    Y.R. Shen, The principles of nonlinear optics (Willey, New York, 1984), p. 110Google Scholar
  65. 65.
    G.K. Kitaeva, Terahertz generation by means of optical lasers. Laser Phys. Lett. 5(8), 568 (2008)CrossRefADSGoogle Scholar
  66. 66.
    J.A. Armstrong, N. Bloembergen, J. Ducuing et al., Interactions between light waves in a nonlinear dielectric. Phys. Rev. 127, 1918 (1962)CrossRefADSGoogle Scholar
  67. 67.
    M.M. Fejer, G.A. Magel, D.H. Jundt et al., Quasi-phase-matched second harmonic generation: tuning and tolerances. IEEE J. Quantum Electron. 28(11), 2631 (1992)CrossRefADSGoogle Scholar
  68. 68.
    I. Tomita, H. Suzuki, H. Ito, et al., Terahertz-wave generation from quasi-phase-matched GaP for 1.55 μm pumping. Appl. Phys. Lett. 88, 071118 (2006)Google Scholar
  69. 69.
    H.J. Bakker, S. Hunsche, H. Kurz, Investigation of anharmonic lattice vibrations with coherent phonon polaritons. Phys Rev B 50, 914 (1994)CrossRefADSGoogle Scholar
  70. 70.
    J.A. L’huillier, G. Torosyan, M. Theuer, et al., Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate—part 1: theory. Appl. Phys. B. 86(2), 185 (2007)Google Scholar
  71. 71.
    J.A. L’huillier, G. Torosyan, M. Theuer, et al., Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate—part 2: experiments. Appl. Phys. B. 86(2), 185–197 (2007)Google Scholar
  72. 72.
    A.K. Sharma, R.K. Patidar, M. Raghuramaiah et al., Measuring pulse-front tilt in ultrashort pulse laser beams without ambiguity of its sign using single-shot tilted pulse-front autocorrelator. Opt. Expr. 14, 13131 (2006)CrossRefADSGoogle Scholar
  73. 73.
    J. Hebling, G. Almasi, I. Kozma et al., Velocity matching by pulse front tilting for large-area THz-pulse generation. Opt. Expr. 10(21), 1161–1166 (2002)CrossRefADSGoogle Scholar
  74. 74.
    B. Bartal, I.Z. Kozma, A.G. Stepanov et al., Toward generation of μJ range sub-ps THz pulses by optical rectification. Appl. Phys. B 86, 419 (2007)CrossRefADSGoogle Scholar
  75. 75.
    Y.S. Lee, T. Meade, M. DeCamp et al., Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobite. Appl. Phys. Lett. 77(9), 1244 (2000)CrossRefADSGoogle Scholar
  76. 76.
    Y.S. Lee, T. Meade, T.B. Norris et al., Tunable narrow-band terahertz generation from periodically poled lithium niobate. Appl. Phys. Lett. 78(23), 3583 (2001)CrossRefADSGoogle Scholar
  77. 77.
    K.L. Vodopyanov, M.M. Fejer, X. Yu et al., Generation of multicycle terahertz pulses via optical rectification in periodically inverted GaAs structures. Appl. Phys. Lett. 89, 141119 (2006)CrossRefADSGoogle Scholar
  78. 78.
    G.K. Kitaeva, K.A. Kuznetsov, V.F. Morozova et al., Reduction-induced polarons and optical response of Mg-doped LiNbO3 crystals. Appl. Phys. B 78, 759 (2004)CrossRefADSGoogle Scholar
  79. 79.
    M.R.K. Soltanian, I.S. Amiri, S.E. Alavi et al., Dual-wavelength erbium-doped fiber laser to generate terahertz radiation using photonic crystal fiber. J. Lightwave Technol. 33(24), 5038 (2015)CrossRefADSGoogle Scholar
  80. 80.
    L. Dong, F. Xie, S. Ma et al., Simple tunable dual-wavelength fiber laser and multiple self-mixing interferometry to large step height measurement. Opt. Express 24(19), 21880–21885 (2016)CrossRefADSGoogle Scholar
  81. 81.
    S. Pan, X. Zhao, C. Lou et al., Switchable single-longitudinal-mode dual-wavelength erbium-doped fiber ring laser incorporating a semiconductor optical amplifier. Opt. Lett. 33(8), 764–766 (2008)CrossRefADSGoogle Scholar
  82. 82.
    X. Fan, W. Zhou, S. Wang et al., Compact dual-wavelength thulium-doped fiber laser employing a double-ring filter. Appl. Opt. 55(12), 3319–3322 (2016)CrossRefADSGoogle Scholar
  83. 83.
    H. Ahmad, A.A. Latif, M.Z. Zulkifli et al., High power dual-wavelength tunable fiber laser in linear and ring cavity configurations. Chin. Opt. Lett. 10(1), 010603 (2012)CrossRefADSGoogle Scholar
  84. 84.
    A.J. Deninger, A. Roggenbuck, S. Schindler, et al., 2.75 THz tuning with a triple-DFB laser system at 1550 nm and InGaAs photomixers. J. Infrared, Millimeter, Terahertz Waves 36(3), 269–277 (2015)Google Scholar
  85. 85.
    M.A. Ummy, S. Bikorimana, R. Dorsinville, Beam Combining of SOA-based bidirectional tunable fiber compound-ring lasers with external reflectors, in Paper presented at the 5th international conference on photonics, optics, and laser technology, Porto, Portugal, 27–31 Feb 2017Google Scholar
  86. 86.
    H. Bruesselbach, D.C. Jones, M.S. Mangir et al., Self-organized coherence in fiber laser arrays. Opt. Lett. 30(11), 1339–1341 (2005)CrossRefADSGoogle Scholar
  87. 87.
    B. Globisch, R.J.B. Dietz, S. Nellen et al., Terahertz detectors from Be-doped low-temperature grown InGaas/InAlAs: interplay of annealing and terahertz performance. AIP Adv. 6(12), 125011 (2016)CrossRefADSGoogle Scholar
  88. 88.
    G. Carpintero, E. Garcia-Munoz, H. Hartnagel et al., Semiconductor Terahertz Technology: Devices and Systems at Room Temperature Operation (Willey, New York, 2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Muhammad Ummy
    • 1
    Email author
  • Abdullah Hossain
    • 2
  • Simeon Bikorimana
    • 2
  • Roger Dorsinville
    • 2
  1. 1.New York City College of TechnologyBrooklynUSA
  2. 2.The City College of New YorkNew YorkUSA

Personalised recommendations