Advertisement

Centimeter-Resolution Long-Distance Optical Fiber Monitoring

  • Felipe CalliariEmail author
  • Luis Herrera
  • Jean Pierre von der Weid
  • Gustavo Amaral
Chapter
  • 16 Downloads
Part of the Springer Series in Optical Sciences book series (SSOS, volume 223)

Abstract

The worldwide dense deployment of optical fiber networks has been driven by the desire of higher transmission capacity necessary for high-level data communications. Supporting all the higher Open Systems Interconnection (OSI) layers is the physical layer represented by the optical fiber, which, unfortunately, suffers from mechanical fragility. The robust operation of the whole network, therefore, can be jeopardized by mundane events such as the strangling of the fiber cable caused by a passing truck on a highway or by a break due to the action of rodents. In order to deal with this issue, physical layer supervision is of the utmost importance and, over the years, reflectometry techniques have been developed and upgraded so that the protection of the optical fibers is ensured. This chapter performs a brief revision of such reflectometry techniques with special focus on the Optical Time Domain Reflectometry and on one of its most interesting recent developments, the Photon-Counting Optical Time Domain Reflectometry. It further presents a technique for centimeter-resolution long-distance measurements of optical fibers in practical times and discusses its performance in detail.

Notes

Acknowledgements

We would like to thank to the brazilian agency CNPq for the financial support, without which this work would not have been realized.

References

  1. 1.
    K. Kao, G.A. Hockham, Dielectric-fibre surface waveguides for optical frequencies, in Proceedings of the Institution of Electrical Engineers, vol. 113 (IET 1966), pp. 1151–1158Google Scholar
  2. 2.
    G.P. Agrawal, Fiber-Optic Communication Systems. Wiley (1997)Google Scholar
  3. 3.
    J.P. Kilmer, A. DeVito, H.H. Yuce, C.J. Wieczorek, J.P. Varachi, W.T. Anderson, Optical cable reliability: lessons learned from post-mortem analyses, in Fiber Optics Reliability: Benign and Adverse Environments IV, International Society for Optics and Photonics, vol. 1366, (1991), pp. 85–92Google Scholar
  4. 4.
    S. Zemon, A. Budman, T. Wei, E. Eichen, K. Ma, Decay of transmitted light during fiber breaks-implications for break location. J. Light. Technol. 12, 1532–1535 (1994)ADSCrossRefGoogle Scholar
  5. 5.
    J.W. Strutt, Xv. on the light from the sky, its polarization and colour. Lond. Edinb. Dublin Philos. Mag. J. Sci. 41, 107–120 (1871)Google Scholar
  6. 6.
    J.W. Strutt, Xxxiv. on the transmission of light through an atmosphere containing small particles in suspension, and on the origin of the blue of the sky. Lond. Edinb. Dublin Philos. Mag. J. Sci. 47, 375–384 (1899)Google Scholar
  7. 7.
    J.W. Strutt, Lviii. on the scattering of light by small particles. Lond. Edinb. Dublin Philos. Mag. J. Sci. 41, 447–454 (1871)Google Scholar
  8. 8.
    D. Derickson, Fiber Optic - Test and Measurement (Prentice Hall, 1998)Google Scholar
  9. 9.
    L. Kissel, R. Pratt, Rayleigh scattering elastic photon scattering by bound electrons. In: Atomic inner-shell physics. Physics of Atoms and Molecules. 1 edn. (Springer, Berlin, 1985), pp. 465–532Google Scholar
  10. 10.
    F. Calliari, Automatic high-dynamic and high-resolution photon counting OTDR for optical fiber network monitoring. Master’s thesis, PUC-Rio (2017)Google Scholar
  11. 11.
    M.K. Barnoski, M.D. Rourke, S.M. Jensen, R.T. Melville, Optical time domain reflectometer. Appl. Opt. 16, 2375–2379 (1977)ADSCrossRefGoogle Scholar
  12. 12.
    Anritsu: MT9083 Series - MT9083A/B/C ACCESS master. Technical report, Specifications Sheet (2011)Google Scholar
  13. 13.
    R.L. Jungerman, D.W. Dolfi, Frequency domain optical network analysis using integrated optics. IEEE J. Quantum Electron. 27, 580–587 (1991)ADSCrossRefGoogle Scholar
  14. 14.
    J.P. von der Weid, R. Passy, G. Mussi, N. Gisin, On the characterization of optical fiber network components with optical frequency domain reflectometry. J. Light. Technol. 15, 1131–1141 (1997)CrossRefGoogle Scholar
  15. 15.
    K. Yuksel, M. Wuilpart, V. Moeyaert, P. Mégret, Optical frequency domain reflectometry: a review, in ICTON’09. 11th International Conference on Transparent Optical Networks, 2009. (IEEE, 2009), pp. 1–5Google Scholar
  16. 16.
    G.C. Amaral, A. Baldivieso, J.D. Garcia, D.C. Villafani, R.G. Leibel, L.E.Y. Herrera, P.J. Urban, J.P. von der Weid, A low-frequency tone sweep method for in-service fault location in subcarrier multiplexed optical fiber networks. J. Light. Technol. 35, 2017–2025 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    J. Nakayama, K. Iizuka, J. Nielsen, Optical fiber fault locator by the step frequency method. Appl. Opt. 26, 440–443 (1987)ADSCrossRefGoogle Scholar
  18. 18.
    N. Park, J. Lee, J. Park, J.G. Shim, H. Yoon, J.H., Kim, K. Kim, J.O. Byun, G. Bolognini, D. Lee et al., Coded optical time domain reflectometry: principle and applications, in Asia-Pacific Optical Communications, International Society for Optics and Photonics (2007), p. 678129Google Scholar
  19. 19.
    R. Liao, M. Tang, C. Zhao, H. Wu, S. Fu, D. Liu, P.P. Shum, Harnessing oversampling in correlation-coded otdr (2017). arXiv:1705.05241
  20. 20.
    Z. Xie, L. Xia, Y. Wang, C. Yang, C. Cheng, D. Liu, Fiber fault detection with high accuracy using chaotic signal from an soa ring reflectometry. IEEE Photonics Technol. Lett. 25, 709–712 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    X. Dong, A. Wang, J. Zhang, H. Han, T. Zhao, X. Liu, Y. Wang, Combined attenuation and high-resolution fault measurements using chaos-OTDR. IEEE Photonics J. 7, 1–6 (2015)Google Scholar
  22. 22.
    D.V. Caballero, J.P. von der Weid, P.J. Urban, Tuneable OTDR measurements for WDM-PON monitoring, in 2013 SBMO/IEEE MTT-S International Microwave Optoelectronics Conference (IMOC) (2013), pp. 1–5Google Scholar
  23. 23.
    P. Eraerds, M. Legré, J. Zhang, H. Zbinden, N. Gisin, Photon counting OTDR: advantages and limitations. J. Light. Technol. 28, 952–964 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    G.C. Amaral, J.D. Garcia, L.E. Herrera, G.P. Temporao, P.J. Urban, J.P. von der Weid, Automatic fault detection in WDM-PON with tunable photon counting OTDR. J. Light. Technol. 33, 5025–5031 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    S. Cova, N. Ghioni, A. Lotito, I. Rech, F. Zappa, Evolution and prospects for single-photon avalanche diodes and quenching circuits. J. Mod. Opt. 15, (2004)Google Scholar
  26. 26.
    L.E.Y. Herrera, Reflectometria óptica de alta resolução por contagem de fótons. Ph.D. thesis, PUC-Rio (2015)Google Scholar
  27. 27.
    L. Herrera, G. Amaral, J.P. von der Weid, Ultra-high-resolution tunable PC-OTDR for PON monitoring in avionics, in Optical Fiber Communications Conference and Exhibition (OFC), 2015 (IEEE, 2015), pp. 1–3Google Scholar
  28. 28.
    G.C. do Amaral, FPGA applications on single photon detection systems. Master’s thesis, PUC-Rio (2014)Google Scholar
  29. 29.
    L.E. Herrera, F. Calliari, J.D. Garcia, G.C. do Amaral, J.P. von der Weid, High resolution automatic fault detection in a fiber optic link via photon counting OTDR, in Optical Fiber Communication Conference, Optical Society of America (2016) M3F.4Google Scholar
  30. 30.
    Santec Corporation, Ultra-Wideband Source UWS-1000H Technical report, Specifications Sheet (2016)Google Scholar
  31. 31.
    F.A. Ghonaim, T.E. Darcie, S. Ganti, Impact of sdn on optical router bypass. IEEE/OSA J. Opt. Commun. Netw. 10, 332–343 (2018)CrossRefGoogle Scholar
  32. 32.
    R.L. Brown, J. Durbin, J.M. Evans, Techniques for testing the constancy of regression relationships over time. J. R. Stat. Soc. Ser. B (Methodological) 149–192 (1975)Google Scholar
  33. 33.
    W.S. Rea, M. Reale, C. Cappelli, J.A. Brown, Identification of changes in mean with regression trees: an application to market research. Econ. Rev. 29, 754–777 (2010)MathSciNetCrossRefGoogle Scholar
  34. 34.
    M. Storath, A. Weinmann, L. Demaret, Jump-sparse and sparse recovery using potts functionals. IEEE Trans. Signal Process. 62, 3654–3666 (2014)MathSciNetCrossRefGoogle Scholar
  35. 35.
    E.J. Candes, M.B. Wakin, S.P. Boyd, Enhancing sparsity by reweighted \(\ell _1\) minimization. J. Fourier Anal. Appl. 14, 877–905 (2008)MathSciNetCrossRefGoogle Scholar
  36. 36.
    S.J. Kim, K. Koh, S. Boyd, D. Gorinevsky, \(\ell _1\) trend filtering. SIAM Rev 51, 339–360 (2009)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    J.P. von der Weid, M.H. Souto, J.D. Garcia, G.C. Amaral, Adaptive filter for automatic identification of multiple faults in a noisy OTDR profile. J. Light. Technol. 34, 3418–3424 (2016)CrossRefGoogle Scholar
  38. 38.
    K. De Souza, Significance of coherent rayleigh noise in fibre-optic distributed temperature sensing based on spontaneous brillouin scattering. Meas. Sci. Technol. 17, 1065 (2006)ADSCrossRefGoogle Scholar
  39. 39.
    M. Souto, J.D. Garcia, G.C. Amaral, \(\ell _1\) adaptive trend filter via fast coordinate descent, in Sensor Array and Multichannel Signal Processing Workshop (SAM), 2016 (IEEE, 2016), pp. 1–5Google Scholar
  40. 40.
    F. Calliari, L.E. Herrera, J.P. von der Weid, G.C. Amaral, High-dynamic and high-resolution automatic photon counting OTDR for optical fiber network monitoring, in 6th International Conference on Photonics. Optics and Laser Technology, vol. 1 (PHOTOPTICS, 2018), pp. 82–90Google Scholar
  41. 41.
    P. Anandarajah, R. Maher, Y. Xu, S. Latkowski, J. O’carroll, S. Murdoch, R. Phelan, J. O’Gorman, L. Barry, Generation of coherent multicarrier signals by gain switching of discrete mode lasers. IEEE Photonics J. 3 112–122 (2011)Google Scholar
  42. 42.
    I.D. Quantique, id210 - Advanced System for Single Photon Detection, Technical report, Specifications Sheet, (2011)Google Scholar
  43. 43.
    I. Rech, S. Marangoni, D. Resnati, M. Ghioni, S. Cova, Multipixel single-photon avalanche diode array for parallel photon counting applications. J. Mod. Opt. 56, 326–333 (2009)ADSCrossRefGoogle Scholar
  44. 44.
    L. Herrera, G. Amaral, J. von der Weid, Investigation of bend loss in single mode fibers with ultra-high-resolution photon-counting optical time domain reflectometer. Appl. Opt. 55, 1177–1182 (2016)ADSCrossRefGoogle Scholar
  45. 45.
    A. Shahpari, R. Ferreira, V. Ribeiro, A. Sousa, S. Ziaie, A. Tavares, Z. Vujicic, F.P. Guiomar, J.D. Reis, A.N. Pinto et al., Coherent ultra dense wavelength division multiplexing passive optical networks. Opt. Fiber Technol. 26, 100–107 (2015)ADSCrossRefGoogle Scholar
  46. 46.
    K. Shimizu, T. Horiguchi, Y. Koyamada, Characteristics and reduction of coherent fading noise in rayleigh backscattering measurement for optical fibers and components. J. Light. Technol. 10, 982–987 (1992)ADSCrossRefGoogle Scholar
  47. 47.
    A.F. Elrefaie, R.E. Wagner, D. Atlas, D. Daut, Chromatic dispersion limitations in coherent lightwave transmission systems. J. Light. Technol. 6, 704–709 (1988)ADSCrossRefGoogle Scholar
  48. 48.
    F. Calliari, G.C. do Amaral, L.E.Y. Herrera, High Dynamic and High Resolution Automatic Photon Counting OTDR (2017), https://www.youtube.com/watch?v=KQn9Du2l4NQ. Accessed on 27 April 2018

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Felipe Calliari
    • 1
    Email author
  • Luis Herrera
    • 1
  • Jean Pierre von der Weid
    • 1
  • Gustavo Amaral
    • 1
  1. 1.PUC-RioRio de JaneiroBrazil

Personalised recommendations