Advertisement

Reducing Bias in Preference Aggregation for Multiagent Soft Constraint Problems

  • Alexander SchiendorferEmail author
  • Wolfgang Reif
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11802)

Abstract

Most distributed constraint optimization problems assume the overall objective function to be the “utilitarian social welfare”, i.e., a sum of several utility functions, belonging to different agents. This also holds for the most popular soft constraint formalisms, cost function networks and weighted constraints. While, in theory, this model is sound, it is susceptible to manipulation and resulting bias in practice. Even without malevolent intentions, bias can result from the way orderings over solutions are transformed into numerical values or normalized. Alternatively, preferences can be aggregated directly using the tools of social choice theory to discourage manipulations and practically reduce unwanted bias. Several common voting functions can be implemented on top of constraint modeling languages through incremental search and suitable improvement predicates. We demonstrate that our approach, in particular Condorcet voting, can undo bias which is shown on two real-life-inspired case studies using the soft constraint extension MiniBrass on top of MiniZinc.

Keywords

Soft constraints Distributed constraint optimization Social choice Modeling languages MiniZinc 

References

  1. 1.
    Andréka, H., Ryan, M., Schobbens, P.Y.: Operators and laws for combining preference relations. J. Log. Comput. 12(1), 13–53 (2002)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Arrow, K.J.: Social Choice and Individual Values. Yale University Press, London (1951)zbMATHGoogle Scholar
  3. 3.
    Arrow, K.J., Sen, A., Suzumura, K.: Handbook of Social Choice and Welfare, vol. 2. Elsevier, Amsterdam (2010)zbMATHGoogle Scholar
  4. 4.
    Beldiceanu, N., Carlsson, M., Demassey, S., Petit, T.: Global constraint catalogue: past present and future. Constraints 12(1), 21–62 (2007)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint satisfaction and optimization. J. ACM 44(2), 201–236 (1997)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chu, G.: Improving combinatorial optimization. Ph.d. thesis, University of Melbourne (2011)Google Scholar
  7. 7.
    Cornelio, C., Pini, M.S., Rossi, F., Venable, K.B.: Multi-agent soft constraint aggregation via sequential voting: theoretical and experimental results. Auton. Agent. Multi-Agent Syst. 33(1–2), 159–191 (2019)CrossRefGoogle Scholar
  8. 8.
    Dalla Pozza, G., Pini, M.S., Rossi, F., Venable, K.B.: Multi-agent soft constraint aggregation via sequential voting. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI 2011), pp. 172–177 (2011)Google Scholar
  9. 9.
    Dalla Pozza, G., Rossi, F., Venable, K.B.: Multi-agent soft constraint aggregation: a sequential approach. In: Proceedings of the 3rd International Conference on Agents and Artificial Intelligence (ICAART 2011), vol. 11 (2010)Google Scholar
  10. 10.
    Dekker, J.J., de la Banda, M.G., Schutt, A., Stuckey, P.J., Tack, G.: Solver-independent large neighbourhood search. In: Hooker, J. (ed.) CP 2018. LNCS, vol. 11008, pp. 81–98. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-98334-9_6CrossRefGoogle Scholar
  11. 11.
    Ehrgott, M.: Multicriteria Optimization, vol. 491. Springer Science & Business Media, New York (2005)zbMATHGoogle Scholar
  12. 12.
    Fioretto, F., Pontelli, E., Yeoh, W.: Distributed constraint optimization problems and applications: a survey. J. Artif. Intell. Res. 61, 623–698 (2018)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Fioretto, F., Yeoh, W., Pontelli, E., Ma, Y., Ranade, S.J.: A Distributed Constraint Optimization (DCOP) approach to the economic dispatch with demand response. In: Proceedings of the 16th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2017), pp. 999–1007. International Foundation for Autonomous Agents and Multiagent Systems (2017)Google Scholar
  14. 14.
    Frisch, A.M., Harvey, W., Jefferson, C., Martínez-Hernández, B., Miguel, I.: Essence: a constraint language for specifying combinatorial problems. Constraints 13(3), 268–306 (2008)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Gadducci, F., Hölzl, M., Monreale, G.V., Wirsing, M.: Soft constraints for lexicographic orders. In: Castro, F., Gelbukh, A., González, M. (eds.) MICAI 2013. LNCS (LNAI), vol. 8265, pp. 68–79. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-45114-0_6CrossRefGoogle Scholar
  16. 16.
    Google Optimization Tools (2017). https://developers.google.com/optimization. Accessed 29 June 2017
  17. 17.
    Hebrard, E., Hnich, B., O’Sullivan, B., Walsh, T.: Finding diverse and similar solutions in constraint programming. In: Proceedings of the 23rd National Conference Artificial Intelligence (AAAI 2005), vol. 5, pp. 372–377 (2005)Google Scholar
  18. 18.
    Meseguer, P., Rossi, F., Schiex, T.: Soft constraints. In: Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming, chap. 9. Elsevier, Amsterdam (2006)CrossRefGoogle Scholar
  19. 19.
    Morgenstern, O., von Neumann, J.: Theory of games and economic behavior (1944)Google Scholar
  20. 20.
    Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc: towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-74970-7_38CrossRefGoogle Scholar
  21. 21.
    Netzer, A., Meisels, A.: SOCIAL DCOP - social choice in distributed constraints optimization. In: Brazier, F.M.T., Nieuwenhuis, K., Pavlin, G., Warnier, M., Badica, C. (eds.) Intelligent Distributed Computing V. SCI, vol. 382, pp. 35–47. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-24013-3_5CrossRefGoogle Scholar
  22. 22.
    Rendl, A., Guns, T., Stuckey, P.J., Tack, G.: MiniSearch: a solver-independent meta-search language for MiniZinc. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp. 376–392. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-23219-5_27CrossRefGoogle Scholar
  23. 23.
    Schiendorfer, A.: Soft Constraints in MiniBrass: Foundations and Applications. Dissertation, Universität Augsburg (2019)Google Scholar
  24. 24.
    Schiendorfer, A., Knapp, A., Anders, G., Reif, W.: MiniBrass: soft constraints for MiniZinc. Constraints 23, 403–450 (2018)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Schiex, T., Fargier, H., Verfaillie, G.: Valued constraint satisfaction problems: hard and easy problems. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI 1995), vol. 1, pp. 631–639. Morgan Kaufmann (1995)Google Scholar
  26. 26.
    Schulte, C., Lagerkvist, M.Z., Tack, G.: Gecode: generic constraint development environment. In: INFORMS Annual Meeting (2006)Google Scholar
  27. 27.
    Schulze, M.: A new monotonic, clone-independent, reversal symmetric, and condorcet-consistent single-winner election method. Soc. Choice Welfare 36(2), 267–303 (2011)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Shoham, Y., Leyton-Brown, K.: Multiagent Systems: Algorithmic, Game-theoretic, and Logical Foundations. Cambridge University Press, Cambridge (2008)CrossRefGoogle Scholar
  29. 29.
    Stuckey, P.J., Feydy, T., Schutt, A., Tack, G., Fischer, J.: The MiniZinc challenge 2008–2013. AI Mag. 35(2), 55–60 (2014)CrossRefGoogle Scholar
  30. 30.
    Yeoh, W., Felner, A., Koenig, S.: BnB-ADOPT: an asynchronous branch-and-bound DCOP algorithm. J. Artif. Intell. Res. 38, 85–133 (2010)CrossRefGoogle Scholar
  31. 31.
    Zivan, R., Yedidsion, H., Okamoto, S., Glinton, R., Sycara, K.: Distributed constraint optimization for teams of mobile sensing agents. Auton. Agent. Multi-Agent Syst. 29(3), 495–536 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute for Software & Systems EngineeringUniversity of AugsburgAugsburgGermany

Personalised recommendations