Advertisement

Vibrational Analysis of Biopolymer-Based Hydrogels Using 3D-Printed Test Structures for Applications in Bioprinting

  • S. SchwarzEmail author
  • B. Hartmann
  • R. Moerl
  • S. Sudhop
  • H. Clausen-Schaumann
  • D. Rixen
Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)

Abstract

The mechanical properties of hydrogels suitable for applications in the field of bioprinting, which tries to develop three-dimensional tissue equivalents, are crucial for the proper fulfilment of their functions in the human body. This aspect is especially important regarding types of tissues which have to withstand applied mechanical forces. Due to their high water content similar to the human body and their tunable mechanical properties, hydrogels based on biopolymers are ideally suited for such applications. In this work, the first results of a novel method for the indirect measurement of the mechanical properties of hydrogels using laser-Doppler vibrometry and 3D-printed test structures are presented. Thanks to the experimental design hydrogels can be cast directly over such beam-like test structures without any leakage. First results show that the resonance frequencies of the beam structure are modulated by the material properties of the different hydrogels placed on it, enabling future applications and further experiments. For comparing the measurement data with the mechanical properties of the samples used, indentation-based measurements have been carried out. This approach can be integrated into existing bioprinting workflows and enables the non-destructive monitoring of biopolymer-based hydrogels in their mechanical properties.

Keywords

Laser-Doppler vibrometry Hydrogels Vibrational analysis Bioprinting Additive manufacturing 

Notes

Acknowledgements

The authors acknowledge financial support through the research focus “Herstellung und biophysikalische Charakterisierung drei-dimensionaler Gewebe – CANTER” of the Bavarian State Ministry for Science and Education and the financial support through the “BayWISS – Ressourceneffizienz und Werkstoffe” program.

References

  1. 1.
    J. Malda, J. Visser, F.P. Melchels, T. Jüngst, W.E. Hennink, W.J.A. Dhert, J. Groll, D.W. Hutmacher, 25th anniversary article: engineering hydrogels for biofabrication. Adv. Mater. 25, 5011–5028 (2013).  https://doi.org/10.1002/adma.201302042 CrossRefGoogle Scholar
  2. 2.
    J.K. Carrow, P. Kerativitayanan, M.K. Jaiswal, G. Lokhande, A.K. Gaharwar, Polymers for bioprinting, in Essentials 3D biofabrication translation, (Elsevier, Amsterdam, 2015), pp. 229–248.  https://doi.org/10.1016/B978-0-12-800972-7.00013-X CrossRefGoogle Scholar
  3. 3.
    A.S. Hoffman, Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 64, 18–23 (2012).  https://doi.org/10.1016/j.addr.2012.09.010 CrossRefGoogle Scholar
  4. 4.
    A.J. Engler, S. Sen, H.L. Sweeney, D.E. Discher, Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).  https://doi.org/10.1016/j.cell.2006.06.044 CrossRefGoogle Scholar
  5. 5.
    J. Swift, I.L. Ivanovska, A. Buxboim, T. Harada, P.C.D.P. Dingal, J. Pinter, J.D. Pajerowski, K.R. Spinler, J.W. Shin, M. Tewari, F. Rehfeldt, D.W. Speicher, D.E. Discher, Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341 (2013).  https://doi.org/10.1126/science.1240104 CrossRefGoogle Scholar
  6. 6.
    L. Rossetti, L.A. Kuntz, E. Kunold, J. Schock, H. Grabmayr, S.A. Sieber, R. Burgkart, A.R. Bausch, The microstructure and micromechanics of the tendon–bone insertion. Nat. Mater. 16(6), 664–670 (2017).  https://doi.org/10.1038/NMAT4863 CrossRefGoogle Scholar
  7. 7.
    M.L. Oyen, Mechanical characterisation of hydrogel materials. Int. Mater. Rev. 59, 44–59 (2014).  https://doi.org/10.1179/1743280413Y.0000000022 CrossRefGoogle Scholar
  8. 8.
    S.J. Rothberg, M.S. Allen, P. Castellini, D. Di Maio, J.J.J. Dirckx, D.J. Ewins, B.J. Halkon, P. Muyshondt, N. Paone, T. Ryan, H. Steger, E.P. Tomasini, S. Vanlanduit, J.F. Vignola, An international review of laser Doppler vibrometry: Making light work of vibration measurement. Opt. Lasers Eng. 99, 11–22 (2016).  https://doi.org/10.1016/j.optlaseng.2016.10.023 CrossRefGoogle Scholar
  9. 9.
    P. Castellini, M. Martarelli, E.P. Tomasini, Laser doppler vibrometry: development of advanced solutions answering to technology’s needs. Mech. Syst. Signal Process. 20, 1265–1285 (2006).  https://doi.org/10.1016/j.ymssp.2005.11.015 CrossRefGoogle Scholar
  10. 10.
    J.J. Rosowski, R.P. Mehta, S.P. Merchant, Diagnostic utility of laser-doppler vibrometry in conductive hearing loss with normal tympanic membrane. Otol. Neurotol. 24, 165–175 (2003).  https://doi.org/10.1158/0008-5472.CAN-10-4002.BONE CrossRefGoogle Scholar
  11. 11.
    T. Schuurman, D.J. Rixen, C.A. Swenne, J.W. Hinnen, Feasibility of laser doppler vibrometry as potential diagnostic tool for patients with abdominal aortic aneurysms. J. Biomech. 46, 1113–1120 (2013).  https://doi.org/10.1016/j.jbiomech.2013.01.013 CrossRefGoogle Scholar
  12. 12.
    N.E. Conza, D.J. Rixen, S. Plomp, Vibration testing of a fresh-frozen human pelvis: The role of the pelvic ligaments. J. Biomech. 40, 1599–1605 (2007).  https://doi.org/10.1016/j.jbiomech.2006.07.001 CrossRefGoogle Scholar
  13. 13.
    F.C. Meral, T.J. Royston, R. Magin, Fractional calculus in viscoelasticity: An experimental study. Commun. Nonlinear Sci. Numer. Simul. 15, 939–945 (2010).  https://doi.org/10.1016/j.cnsns.2009.05.004 MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    G. Xu, C. Wang, T. Feng, D.E. Oliver, X. Wang, Non-contact photoacoustic tomography with a laser Doppler vibrometer”, Proc. SPIE 8943, Photons Plus Ultrasound: Imaging and Sensing 2014, 894332 (3 March 2014);  https://doi.org/10.1117/12.2040290
  15. 15.
    M. Jaschke, H.J. Butt, Calculation of thermal noise in atomic force microscopy. Nanotechnology 6, 1–7 (1995).  https://doi.org/10.1088/0957-4484/6/1/001 CrossRefGoogle Scholar
  16. 16.
    I.N. Sneddon, The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47–57 (1965).  https://doi.org/10.1016/0020-7225(65)90019-4 MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    D.C. Lin, E.K. Dimitriadis, F. Horkay, Robust strategies for automated AFM force curve analysis—I. Non-adhesive indentation of soft, inhomogeneous materials. J. Biomech. Eng. 129, 430–440 (2006)CrossRefGoogle Scholar
  18. 18.
    C. Prein, N. Warmbold, Z. Farkas, M. Schieker, A. Aszodi, H. Clausen-Schaumann, Structural and mechanical properties of the proliferative zone of the developing murine growth plate cartilage assessed by atomic force microscopy. Matrix Biol. 50, 1–15 (2016).  https://doi.org/10.1016/j.matbio.2015.10.001 CrossRefGoogle Scholar

Copyright information

© Society for Experimental Mechanics, Inc. 2020

Authors and Affiliations

  • S. Schwarz
    • 1
    • 2
    Email author
  • B. Hartmann
    • 1
  • R. Moerl
    • 3
  • S. Sudhop
    • 1
  • H. Clausen-Schaumann
    • 1
  • D. Rixen
    • 2
  1. 1.Center for Applied Tissue Engineering and Regenerative Medicine–CANTERMunich University of Applied SciencesMunichGermany
  2. 2.Department of Mechanical EngineeringTechnical University of MunichGarchingGermany
  3. 3.Polytec GmbHWaldbronnGermany

Personalised recommendations