Entropy Production in Phase Field Theories

  • Peter VánEmail author
Part of the Mathematics of Planet Earth book series (MPE, volume 6)


Allen–Cahn (Ginzburg–Landau) dynamics for scalar fields with heat conduction is treated in rigid bodies using a nonequilibrium thermodynamic framework with weakly nonlocal internal variables . The entropy production and entropy flux is calculated with the classical method of irreversible thermodynamics by separating full divergences.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The work was supported by the grants National Research, Development and Innovation Office – NKFIH 116197(116375), NKFIH 124366(124508) and NKFIH 123815.

The paper is dedicated to Jüri Engelbrecht on the occasion of his 80th birthday.


  1. Berezovski, A., Ván, P.: Internal Variables in Thermoelasticity. Springer, Cham (2017). CrossRefGoogle Scholar
  2. Berezovski, A., Engelbrecht, J., Berezovski, M.: Waves in microstructured solids: a unified viewpoint of modelling. Acta Mech. 220(1-4), 349–363 (2011a). CrossRefGoogle Scholar
  3. Berezovski, A., Engelbrecht, J., Maugin, G.A.: Generalized thermomechanics with dual internal variables. Arch. Appl. Mech. 81(2), 229–240 (2011b). CrossRefGoogle Scholar
  4. Berezovski, A., Yildizdag, M.E., Scerrato, D.: On the wave dispersion in microstructured solids. Contin. Mech. Thermodyn. online first (2018).
  5. Cahn, J.W.: On spinodal decomposition. Acta Metallica 9, 795–801 (1961)CrossRefGoogle Scholar
  6. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system I. Interfacial free energy. J. Chem. Phys. 28(2), 258–267 (1958). Google Scholar
  7. Emmerich, H.: Advances of and by phase-field modelling in condensed-matter physics. Adv. Phys. 57(1), 1–87 (2008). CrossRefGoogle Scholar
  8. de Groot, S.R., Mazur, P.: Non-equilibrium Thermodynamics. North-Holland, Amsterdam (1962)zbMATHGoogle Scholar
  9. Gurtin, M.G.: Generalized Ginzburg–Landau and Cahn–Hilliard equations based on a microforce balance. Physica D 92(3), 178–192 (1996). MathSciNetCrossRefGoogle Scholar
  10. Hohenberg, P.C., Halperin, B.I.: Theory of dynamic critical phenomena. Rev. Mod. Phys. 49(3), 435–479 (1977). CrossRefGoogle Scholar
  11. Hohenberg, P.C., Krekhov, A.: An introduction to the Ginzburg-Landau theory of phase transitions and nonequilibrium patterns. Phys. Rep. 572, 1–42 (2015). MathSciNetCrossRefGoogle Scholar
  12. Maugin, G.A.: On the thermomechanics of continuous media with diffusion and/or weak nonlocality. Arch. Appl. Mech. 75, 723–738 (2006)CrossRefGoogle Scholar
  13. Öttinger, H.C.: Beyond Equilibrium Thermodynamics. Wiley-Interscience, Hoboken, NJ, USA (2005). CrossRefGoogle Scholar
  14. Penrose, O., Fife, P.C.: Thermodynamically consistent models of phase-field type for the kinetics of phase transitions. Physica D 43(1), 44–62 (1990). MathSciNetCrossRefGoogle Scholar
  15. Sekerka, R.F.: Irreversible thermodynamic basis of phase field models. Phil. Mag. 91(1), 3–23 (2011). CrossRefGoogle Scholar
  16. Ván, P.: Weakly nonlocal non-equilibrium thermodynamics: the Cahn–Hilliard equation. In: Altenbach, H., Pouget, J., Rousseau, M., Collet, B., Michelitsch, T. (eds.) Generalized Models and Non-Classical Approaches in Complex Materials, vol. 1, pp. 745–760. Springer, Cham (2018)CrossRefGoogle Scholar
  17. Ván, P., Berezovski, A., Engelbrecht, J.: Internal variables and dynamic degrees of freedom. J. Non-Equilibr. Thermodyn. 33(3), 235–254 (2008). CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Theoretical PhysicsWigner Research Centre for PhysicsBudapestHungary
  2. 2.Department of Energy Engineering, Faculty of Mechanical EngineeringBudapest University of Technology and EconomicsBudapestHungary

Personalised recommendations