Advertisement

Using an Indoor Localization System for Activity Recognition

  • Andrea Aliperti
  • José Corcuera
  • Chiara Fruzzetti
  • Gianluca Marchini
  • Francesco Miliani
  • Simone Musetti
  • Andrea Primaverili
  • Riccardo Rocchi
  • Davide Ruisi
  • Alessio VecchioEmail author
Conference paper
  • 40 Downloads
Part of the EAI/Springer Innovations in Communication and Computing book series (EAISICC)

Abstract

Recognizing the activities performed by users is important in many application domains, from e-health to home automation. This paper explores the use of a fine-grained indoor localization system, based on ultra-wideband, for activity recognition. The user is supposed to wear a number of active tags. The position of active tags is first determined with respect to the space where the user is moving, then some position-independent metrics are estimated and given as input to a previously trained system. Experimental results show that accuracy values as high as ∼95% can be obtained when using a personalized model.

Keywords

Activity recognition Wearable device Ultra-wideband 

Notes

Acknowledgements

This work was funded in part by University of Pisa, grant PRA_2017_37 “IoT and Big Data: metodologie e tecnologie per la raccolta e lelaborazione di grosse moli di dati.”

References

  1. 1.
    Abbate, S., Avvenuti, M., Bonatesta, F., Cola, G., Corsini, P., Vecchio, A.: A smartphone-based fall detection system. Pervasive Mob. Comput. 8(6), 883–899 (2012). https://doi.org/10.1016/j.pmcj.2012.08.003 CrossRefGoogle Scholar
  2. 2.
    Aggarwal, J., Xia, L.: Human activity recognition from 3D data: a review. Pattern Recogn. Lett. 48, 70–80 (2014). https://doi.org/10.1016/j.patrec.2014.04.011 CrossRefGoogle Scholar
  3. 3.
    Bao, L., Intille, S.S.: Activity recognition from user-annotated acceleration data. In: Ferscha, A., Mattern, F. (eds.) Pervasive Computing, pp. 1–17. Springer, Berlin (2004)Google Scholar
  4. 4.
    Benmansour, A., Bouchachia, A., Feham, M.: Multioccupant activity recognition in pervasive smart home environments. ACM Comput. Surv. 48(3), 34:1–34:36 (2015). https://doi.org/10.1145/2835372
  5. 5.
    Brezmes, T., Gorricho, J.L., Cotrina, J.: Activity recognition from accelerometer data on a mobile phone. In: International Work-Conference on Artificial Neural Networks, pp. 796–799. Springer, Berlin (2009)Google Scholar
  6. 6.
    Bulling, A., Blanke, U., Schiele, B.: A tutorial on human activity recognition using body-worn inertial sensors. ACM Comput. Surv. 46(3), 33:1–33:33 (2014). https://doi.org/10.1145/2499621
  7. 7.
    Cheng, J., Amft, O., Bahle, G., Lukowicz, P.: Designing sensitive wearable capacitive sensors for activity recognition. IEEE Sens. J. 13(10), 3935–3947 (2013).  https://doi.org/10.1109/JSEN.2013.2259693 CrossRefGoogle Scholar
  8. 8.
    Chowdhury, A.K., Tjondronegoro, D., Chandran, V., Trost, S.G.: Physical activity recognition using posterior-adapted class-based fusion of multiaccelerometer data. IEEE J. Biomed. Health Inform. 22(3), 678–685 (2018).  https://doi.org/10.1109/JBHI.2017.2705036 CrossRefGoogle Scholar
  9. 9.
    Cola, G., Avvenuti, M., Vecchio, A., Yang, G.Z., Lo, B.: An unsupervised approach for gait-based authentication. In: 2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN). pp. 1–6 (2015).  https://doi.org/10.1109/BSN.2015.7299423
  10. 10.
    Cola, G., Avvenuti, M., Musso, F., Vecchio, A.: Personalized gait detection using a wrist-worn accelerometer. In: 2017 IEEE 14th International Conference on Wearable and Implantable Body Sensor Networks (BSN). pp. 173–177 (2017).  https://doi.org/10.1109/BSN.2017.7936035
  11. 11.
    Davies, N., Siewiorek, D.P., Sukthankar, R.: Activity-based computing. IEEE Pervasive Comput. 7(2), 20–21 (2008).  https://doi.org/10.1109/MPRV.2008.26 CrossRefGoogle Scholar
  12. 12.
    Decawave. http://www.decawave.com. Accessed 15 May 2018
  13. 13.
    Ermes, M., Prkk, J., Mntyjrvi, J., Korhonen, I.: Detection of daily activities and sports with wearable sensors in controlled and uncontrolled conditions. IEEE Trans. Inf. Technol. Biomed. 12(1), 20–26 (2008).  https://doi.org/10.1109/TITB.2007.899496 CrossRefGoogle Scholar
  14. 14.
    Gao, L., Bourke, A., Nelson, J.: Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems. Med. Eng. Phys. 36(6), 779–785 (2014). https://doi.org/https://doi.org/10.1016/j.medengphy.2014.02.012 CrossRefGoogle Scholar
  15. 15.
    Gupta, P., Dallas, T.: Feature selection and activity recognition system using a single triaxial accelerometer. IEEE Trans. Biomed. Eng. 61(6), 1780–1786 (2014).  https://doi.org/10.1109/TBME.2014.2307069 CrossRefGoogle Scholar
  16. 16.
    Kononenko, I., Šimec, E., Robnik-Šikonja, M.: Overcoming the myopia of inductive learning algorithms with RELIEFF. Appl. Intell. 7(1), 39–55 (1997)CrossRefGoogle Scholar
  17. 17.
    Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. SIGKDD Explor. Newsl. 12(2), 74–82 (2011). https://doi.org/10.1145/1964897.1964918 CrossRefGoogle Scholar
  18. 18.
    Lara, O.D., Labrador, M.A.: A survey on human activity recognition using wearable sensors. IEEE Commun. Surv. Tutorials 15(3), 1192–1209 (2013)CrossRefGoogle Scholar
  19. 19.
    Rassat, A., Fowler, P.W.: Is there a most chiral tetrahedron? Chem. Eur. J. 10(24), 6575–6580.  https://doi.org/10.1002/chem.200400869
  20. 20.
    Reyes-Ortiz, J.L., Oneto, L., Sam, A., Parra, X., Anguita, D.: Transition-aware human activity recognition using smartphones. Neurocomputing 171, 754–767 (2016). https://doi.org/https://doi.org/10.1016/j.neucom.2015.07.085 CrossRefGoogle Scholar
  21. 21.
    Sigg, S., Blanke, U., Tröster, G.: The telepathic phone: frictionless activity recognition from WiFi-RSSI. In: 2014 IEEE International Conference on Pervasive Computing and Communications (PerCom). pp. 148–155 (2014).  https://doi.org/10.1109/PerCom.2014.6813955
  22. 22.
    Ward, J.A., Lukowicz, P., Troster, G., Starner, T.E.: Activity recognition of assembly tasks using body-worn microphones and accelerometers. IEEE Trans. Pattern Anal. Mach. Intell. 28(10), 1553–1567 (2006).  https://doi.org/10.1109/TPAMI.2006.197 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Andrea Aliperti
    • 1
  • José Corcuera
    • 1
  • Chiara Fruzzetti
    • 1
  • Gianluca Marchini
    • 1
  • Francesco Miliani
    • 1
  • Simone Musetti
    • 1
  • Andrea Primaverili
    • 1
  • Riccardo Rocchi
    • 1
  • Davide Ruisi
    • 1
  • Alessio Vecchio
    • 1
    Email author
  1. 1.University of PisaPisaItaly

Personalised recommendations