Nanotechnology: Science and Technology at New Length Scale with Implications in Defense

  • Narendra Kumar
  • Ambesh Dixit


Nanotechnology is a buzzword in the present era and is an outstanding technology of manipulating matter at a nanometer-length scale (10−9 m) to yield materials with unique properties and devices to perform very complex functions. It has broken all the boundaries between all the disciplines of science and technology to engage researchers working on the fundamental and applied aspects by joining hands. New physical and chemical phenomena such as very high surface-to-volume ratio, quantum confinement, creation of discrete energy states giving birth to unusual characteristics such as band gap openings in metal, widening in semiconductor and insulators, and very high chemical reactivity to make the materials as wonderful catalyst, adsorbents, and sensors. Some of these unusual characteristics are being exploited in achieving fuel-efficient lightweight vehicles and weapon platforms, lightweight and high-strength body armors, management of signatures to camouflage military objects, management of weapons of mass destruction (CBRN), and smart soldiers, along with making paradigm shifts in future defense technologies.


Nanomaterials Nanotechnology Types of Nanomaterials Quantum Dots CNTs Graphene Nanocomposites Nanotechnology in Defense Quantum confinement Catalysis 


  1. 1.
    N. Kumar, S. Kumbhat, Essentials in Nanoscience and Nanotechnology (Wiley, USA, 2016)Google Scholar
  2. 2.
    Drexler K.E. Engines of Creation: The Coming Era of Nanotechnology, (Anchorbooks, USA, 2006)Google Scholar
  3. 3.
    D. Baxter, T. Maynard, Nanotechnology: Recent Developments, Risks and Opportunities Lloyd’s Report, 2007Google Scholar
  4. 4.
    C. Buzea, I.I. Pacheco, K. Robbie, Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases 2(4), MR17–MR71 (2007)CrossRefGoogle Scholar
  5. 5.
    Nanotechnologies — Vocabulary — Part 2: Nano-objects, International Organization for Standardization, 2015. Retrieved 2018-01-08Google Scholar
  6. 6.
    M.K. Hedayati, S. Fahr, C. Etrich, F. Faupel, C. Rockstuhland, M. Elbahri, The hybrid concept for realization of an ultra-thinplasmonic metamaterial antireflection coating andplasmonic rainbow. Nanoscale 6, 6037–6045 (2014)CrossRefGoogle Scholar
  7. 7.
    M. Aliofkhazraei (ed.), Chapter 8, in Comprehensive Guide forNanocoatings Technology, vol. 4, (Nova Science Publishers, Inc., 2015).; ISBN. 978- 1-63482-648-8Google Scholar
  8. 8.
    H.K. Raut, V.A. Ganesh, A.S. Nair, S. Ramakrishna, Anti-reflective coatings: A critical, in-depth review. Energy Environ. Sci. 4, 3779 (2011)CrossRefGoogle Scholar
  9. 9.
    C.H. Bowen, B. Dai, C.J. Sargent, W. Bai, P. Ladiwala, H. Feng, W. Huang, D.L. Kaplan, J.M. Galazka, F. Zhang, Recombinant Spidroins fully replicate primary mechanical properties of natural spider silk. Biomacromolecules 19, 3853–3860 (2018)CrossRefGoogle Scholar
  10. 10.
    N. Du et al., Design of superior spider silk: From nanostructure to mechanical properties. Biophys. J. 91(12), 4528–4535 (2006)CrossRefGoogle Scholar
  11. 11.
    J. Doyle, Ancient Maya painted ceramics, in Heilbrunn Timeline of Art History, (The Metropolitan Museum of Art, New York, 2000)Google Scholar
  12. 12.
    A. Kumar, Nanotechnology Development in India an Overview (Research and Information System for Developing Countries (RIS, India, December, 2014)Google Scholar
  13. 13.
    M. Faraday, X. The Bakerian Lecture.—Experimental relations of gold (and other metals) to light. Philos. Trans. R. Soc. Lond. 147, 145–181 (1857)CrossRefGoogle Scholar
  14. 14.
    R. Feynman, There’s plenty of room at the bottom, in Feynman and Computation, (CRC Press, UK, 2018), pp. 63–76Google Scholar
  15. 15.
    N. Taniguchi, On the basic concept of ‘Nano-Technology’, Proceedings of the International Conference on Production Engineering, Tokyo, 1974Google Scholar
  16. 16.
    C.J. Chen, Introduction to scanning tunneling microscopy (Oxford University Press, UK 1993)Google Scholar
  17. 17.
    K. Eric Drexler, Nanosystems: Molecular Machinery, Manufacturing, and Computation, John Wiley & Sons, Inc. New York, NY, USA 1992Google Scholar
  18. 18.
    Mihail C. Roco and William Sims Bainbridge, Societal Implications of Nanoscience and Nanotechnology, Springer, Dordrecht, March, 2001Google Scholar
  19. 19.
    R. C. Haddon, R. E. Palmer, H. W. Kroto and P. A. Sermon, The Fullerenes: Powerful Carbon-Based Electron Acceptors, [and Discussion].” Philosophical Transactions: Physical Sciences and Engineering 343, 53–62 (1993)Google Scholar
  20. 20.
    S. Iijima, Helical microtubules of graphitic carbon. Nature 354(6348), 56 (1991)CrossRefGoogle Scholar
  21. 21.
    K.S. Novoselov et al., Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)CrossRefGoogle Scholar
  22. 22.
    K. I. Tserpes, N. Silvestre (eds.), Modeling of Carbon Nanotubes, Graphene and their Composites (Springer, Berlin, 2014)Google Scholar
  23. 23.
    P.R. Sajanlal et al., Anisotropic nanomaterials: Structure, growth, assembly, and functions. Nano Rev. 2(1), 5883 (2011)CrossRefGoogle Scholar
  24. 24., version 1.0, Feb 2015Google Scholar
  25. 25.
    M. Pereiro, D. Baldomir, J.E. Arias, Unexpected magnetism of small silver clusters. Phys. Rev. A 75(6), 063204 (2007)CrossRefGoogle Scholar
  26. 26.
    M. Watanabe et al., Application of ionic liquids to energy storage and conversion materials and devices. Chem. Rev. 117(10), 7190–7239 (2017)CrossRefGoogle Scholar
  27. 27.
    P.N. Kapoor et al., Mixed metal oxide nanoparticles, in Dekker Encyclopedia of Nanoscience and Nanotechnology, (pp. 2007–2015, CRC Press, USA, 2004)Google Scholar
  28. 28.
    J. Jose, G. Netto, Role of solid lipid nanoparticles as photoprotective agents in cosmetics. J. Cosmet. Dermatol. 18(1), 315–321 (2019)CrossRefGoogle Scholar
  29. 29.
    Z. Pan et al., High-efficiency “green” quantum dot solar cells. Journal of the American Chemical Society 136(25), 9203–9210 (2014)CrossRefGoogle Scholar
  30. 30.
    R.V. Ramani et al., Nanotechnology: New hope of efficiency enhancement for solar evacuated tube collector. World J. Eng. 13(3), 199–205 (2016)CrossRefGoogle Scholar
  31. 31.
    R.H. Fernando, Nanocomposite and nanostructured coatings: Recent advancements. Nanotechnol. Appl. Coatings 1008, 2–21 (2009)CrossRefGoogle Scholar
  32. 32.
    T. Yadav, High volume manufacturing of nanoparticles and nano-dispersed particles at low cost, U.S. Patent Application No. 10/698,564Google Scholar
  33. 33.
    W.-Q. Wu et al., Recent advances in hierarchical three-dimensional titanium dioxide nanotree arrays for high-performance solar cells. J. Mater. Chem. A 5(25), 12699–12717 (2017)CrossRefGoogle Scholar
  34. 34.
    I. Chilibon, J.N. Marat-Mendes, Ferroelectric ceramics by sol–gel methods and applications: A review. J. Sol-Gel Sci. Technol. 64(3), 571–611 (2012)CrossRefGoogle Scholar
  35. 35.
    J. Park et al., One-nanometer-scale size-controlled synthesis of monodisperse magnetic Iron oxide nanoparticles. Angew. Chem. Int. Ed. 44(19), 2872–2877 (2005)CrossRefGoogle Scholar
  36. 36.
    D.H. Kim et al., Effect of cu-O layer spacing on the magnetic field induced resistive broadening of high-temperature superconductors. Phys. C Superconductivity 177(4–6), 431–437 (1991)CrossRefGoogle Scholar
  37. 37.
    B.K. Chaudhuri, Some aspects of glass-ceramic superconductors. Bull. Mater. Sci. 18(1), 27–46 (1995)CrossRefGoogle Scholar
  38. 38.
    J.M. Phillips, Substrate selection for high-temperature superconducting thin films. J. Appl. Phys. 79(4), 1829–1848 (1996)CrossRefGoogle Scholar
  39. 39.
    I. Ganesh, A review on magnesium aluminate (MgAl2O4) spinel: Synthesis, processing and applications. Int. Mater. Rev. 58(2), 63–112 (2013)CrossRefGoogle Scholar
  40. 40.
    X. Bai, F. Purcell-Milton, K.G.’k. Yuri, Optical properties, synthesis, and potential applications of cu-based ternary or quaternary anisotropic quantum dots, polytypic nanocrystals, and core/shell heterostructures. Nanomaterials 9(1), 85 (2019)CrossRefGoogle Scholar
  41. 41.
    S. Jun, E. Jang, Bright and stable alloy core/multishell quantum dots. Angew. Chem. Int. Ed. 52(2), 679–682 (2013)CrossRefGoogle Scholar
  42. 42.
    Khan, Zishan Husain, and M. Husain. "Carbon Nanotube and its Possible Applications." (2005)Google Scholar
  43. 43.
    Tserpes, Konstantinos I., and Nuno Silvestre, Molecular Dynamics Simulation and Continuum Shell Model for Buckling Analysis of Carbon Nanotubes, Springer, Cham, Switzerland (2014)Google Scholar
  44. 44.
    Y. Hancock, The 2010 Nobel Prize in physics—Ground-breaking experiments on graphene. J. Phys. D. Appl. Phys. 44(47), 473001 (2011)CrossRefGoogle Scholar
  45. 45.
    S.-Y. Yang et al., Symmetry demanded topological nodal-line materials. Adv. Phys. X 3(1), 1414631 (2018)Google Scholar
  46. 46.
    V.N. Kotov et al., Electron-electron interactions in graphene: Current status and perspectives. Rev. Mod. Phys. 84(3), 1067 (2012)CrossRefGoogle Scholar
  47. 47.
    Jo, Insun. "Experimental Investigation of Thermal Transport in Graphene and Hexagonal Boron Nitride." Ph.D. Thesis, The University of Texas at Austin (2012)Google Scholar
  48. 48.
    F. Zhao et al., Stimuli-deformable graphene materials: From nanosheet to macroscopic assembly. Mater. Today 19(3), 146–156 (2016)CrossRefGoogle Scholar
  49. 49.
    S.A. Bhuyan et al., A review of functionalized graphene properties and its application. Int. J. Innov. Sci. Res. 17(2), 303–315 (2015)Google Scholar
  50. 50.
    D. Jariwala, A. Srivastava, P.M. Ajayan, Graphene synthesis and band gap opening. J. Nanosci. Nanotechnol. 11(8), 6621–6641 (2011)CrossRefGoogle Scholar
  51. 51.
    C. Harito et al., Polymer nanocomposites having a high filler content: Synthesis, structures, properties, and applications. Nanoscale 11(11), 4653–4682 (2019)CrossRefGoogle Scholar
  52. 52.
    N. Kumar et al., Simple route for synthesis of multilayer graphene nanoballs by flame combustion of edible oil. Graphene 1(1), 63–67 (2013)CrossRefGoogle Scholar
  53. 53.
    E. Busseron et al., Supramolecular self-assemblies as functional nanomaterials. Nanoscale 5(16), 7098–7140 (2013)CrossRefGoogle Scholar
  54. 54.
    K. Okamoto et al., Self-assembly of optical molecules with supramolecular concepts. Int. J. Mol. Sci. 10(5), 1950–1966 (2009)CrossRefGoogle Scholar
  55. 55.
    X.M. Wen et al., Constructing novel fibre reinforced plastic (FRP) composites through a biomimetic approach: Connecting glass fibre with nanosized boron nitride by polydopamine coating. J. Nanomater. 2013, 155 (2013)Google Scholar
  56. 56.
    V. Dhand et al., A comprehensive review of graphene nanocomposites: Research status and trends. J. Nanomater. 2013, 158 (2013)CrossRefGoogle Scholar
  57. 57.
    K. Müller et al., Review on the processing and properties of polymer nanocomposites and nanocoatings and their applications in the packaging, automotive and solar energy fields. Nano 7(4), 74 (2017)Google Scholar
  58. 58.
    P.H.C. Camargo, K.G. Satyanarayana, F. Wypych, Nanocomposites: synthesis, structure, properties and new application opportunities. Mater. Res. 12(1), 1–39 (2009)CrossRefGoogle Scholar
  59. 59.
    I.-Y. Jeon, Jong-BeomBaek, Nanocomposites derived from polymers and inorganic nanoparticles. Materials 3(6), 3654–3674 (2010)CrossRefGoogle Scholar
  60. 60.
    T. Hanemann, D.V. Szabó, Polymer-nanoparticle composites: From synthesis to modern applications. Materials 3(6), 3468–3517 (2010)CrossRefGoogle Scholar
  61. 61.
    E.L. Dreizin, Metal-based reactive nanomaterials. Prog. Energy Combust. Sci. 35(2), 141–167 (2009)CrossRefGoogle Scholar
  62. 62.
    Ghanta, Sekher Reddy, and Krishnamurthi Muralidharan. "Chemical synthesis of aluminum nanoparticles." J. Nanopart. Res. 15.6 (2013): 1715Google Scholar
  63. 63.
    P. Feng, W. Cao, Properties, application and synthesis methods of Nano-molybdenum powder. J. Mater. Sci. Chem. Eng. 4(09), 36 (2016)Google Scholar
  64. 64.
    P. Tian et al., Graphene quantum dots from chemistry to applications. Mater. Today Chem. 10, 221–258 (2018)CrossRefGoogle Scholar
  65. 65.
    I. Khan, K. Saeed, I. Khan, Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. (2017)Google Scholar
  66. 66.
    P.A. Ajibade, J.Z. Mbese, Synthesis and characterization of metal sulfides nanoparticles/poly (methyl methacrylate) nanocomposites. Int. J. Polym. Sci. 2014, 1 (2014)CrossRefGoogle Scholar
  67. 67.
    S. Tamboli et al., Energy transfer from Pr3+ to Gd3+ ions in BaB8O13 phosphor for phototherapy lamps. Phys. B Condens. Matter 535, 232–236 (2018)CrossRefGoogle Scholar
  68. 68.
    Y. Wang, A. Hu, Carbon quantum dots: Synthesis, properties and applications. J. Mater. Chem. C 2(34), 6921–6939 (2014)CrossRefGoogle Scholar
  69. 69.
    A. Ali et al., Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol. Sci. Appl. 9, 49 (2016)CrossRefGoogle Scholar
  70. 70.
    K. Manzoor, V. Aditya, S.R. Vadera, N. Kumar, T.R.N. Kutty, Spntaneous organization of ZnS nanoparticles into monocrystalline nanorods with highly enhanced dopant related emission. J. Phys. Chem. Solids 66, 1164–1170 (2005)CrossRefGoogle Scholar
  71. 71.
    The global market for aluminium oxide nanoparticles, Future Markets, Inc. Technology Report No. 76Google Scholar
  72. 72.
    Y.K. Park et al., Size-controlled synthesis of alumina nanoparticles from aluminumalkoxides. Mater. Res. Bull. 40(9), 1506–1512 (2005)CrossRefGoogle Scholar
  73. 73.
    C. Xu et al., Mechanochemical synthesis of advanced nanomaterials for catalytic applications. Chem. Commun. 51(31), 6698–6713 (2015)CrossRefGoogle Scholar
  74. 74.
    G. Kandasamy, D. Maity, Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics. Int. J. Pharm. 496(2), 191–218 (2015)CrossRefGoogle Scholar
  75. 75.
    M. Mascolo, Y. Pei, T. Ring, Room temperature co-precipitation synthesis of magnetite nanoparticles in a large pH window with different bases. Materials 6(12), 5549–5567 (2013)CrossRefGoogle Scholar
  76. 76.
    Majidi, Sima, et al. "Current methods for synthesis of magnetic nanoparticles." Artif. Cells Nanomed. Biotechnol. 44.2 (2016): 722–734Google Scholar
  77. 77.
    R. Mahmud, F. Nabi, Application of nanotechnology in the field of textile. IOSR J. Polym. Text. Eng. 4(1), 2181–2348p (2017)Google Scholar
  78. 78.
    J. Zhang, et al., Studies on Nanosecond 532nm and 355nm and Ultrafast 515nm and 532nm Laser Cutting Super-Hard Materials, Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XXII. Vol. 10091, International Society for Optics and Photonics, 2017Google Scholar
  79. 79.
    M. Islam, R. Martinez-Duarte, A sustainable approach for tungsten carbide synthesis using renewable biopolymers. Ceram. Int. 43(13), 10546–10553 (2017)CrossRefGoogle Scholar
  80. 80.
    K.M. Reddy et al., Nanostructured tungsten carbides by thermochemical processing. J. Alloys Compd. 494(1–2), 404–409 (2010)CrossRefGoogle Scholar
  81. 81.
    T. Xing et al., Ball milling: A green mechanochemical approach for synthesis of nitrogen doped carbon nanoparticles. Nanoscale 5(17), 7970–7976 (2013)CrossRefGoogle Scholar
  82. 82.
    N. Saifuddin, A.Z. Raziah, A.R. Junizah, Carbon nanotubes: A review on structure and their interaction with proteins. J. Chem. 2012 (2013)Google Scholar
  83. 83.
    Y.I. Zhang, L. Zhang, C. Zhou, Review of chemical vapor deposition of graphene and related applications. Acc. Chem. Res. 46(10), 2329–2339 (2013)CrossRefGoogle Scholar
  84. 84.
    A.Gil. Villalba, Single Shot Ablation of Monolayer Graphene by Spatially Shaped Femtosecond Laser Pulses. Diss. Université Bourgogne Franche-Comté, 2017Google Scholar
  85. 85.
    M. Cai et al., Methods of graphite exfoliation. J. Mater. Chem. 22(48), 24992–25002 (2012)CrossRefGoogle Scholar
  86. 86.
    K.A.I. Yan et al., Designed CVD growth of graphene via process engineering. Acc. Chem. Res. 46(10), 2263–2274 (2013)CrossRefGoogle Scholar
  87. 87.
    H.C. Lee et al., Review of the synthesis, transfer, characterization and growth mechanisms of single and multilayer graphene. RSC Adv. 7(26), 15644–15693 (2017)CrossRefGoogle Scholar
  88. 88.
    R.K. Singh, R. Kumar, D.P. Singh, Graphene oxide: Strategies for synthesis, reduction and frontier applications. RSC Adv. 6(69), 64993–65011 (2016)CrossRefGoogle Scholar
  89. 89.
    J. Chen et al., An improved hummers method for eco-friendly synthesis of graphene oxide. Carbon 64, 225–229 (2013)CrossRefGoogle Scholar
  90. 90.
    D.R. Dreyer et al., The chemistry of graphene oxide. Chem. Soc. Rev. 39(1), 228–240 (2010)CrossRefGoogle Scholar
  91. 91.
    V. Rajendran, K. Saminathan, K.E. Geckeler, Advanced Nanomaterials: Synthesis and Applications, BLOOMSBURY, 2015Google Scholar
  92. 92.
    C.E. Harris, J.H. Starnes, M.J. Shuart, Design and manufacturing of aerospace composite structures, state-of-the-art assessment. J. Aircr. 39(4), 545–560 (2002)CrossRefGoogle Scholar
  93. 93.
    J. Pal, T. Pal, Faceted metal and metal oxide nanoparticles: Design, fabrication and catalysis. Nanoscale 7(34), 14159–14190 (2015)CrossRefGoogle Scholar
  94. 94.
    R. Dastjerdi, M. Montazer, A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on anti-microbial properties. Colloids Surf. B: Biointerfaces 79(1), 5–18 (2010)CrossRefGoogle Scholar
  95. 95.
    M. A. Carpenter, S. Mathur, A. Kolmakov (eds.), Metal oxide nanomaterials for chemical sensors (Springer Science & Business Media, USA, 2012)Google Scholar
  96. 96.
    S. Peng et al., Multi-functional electrospunnanofibres for advances in tissue regeneration, energy conversion & storage, and water treatment. Chem. Soc. Rev. 45(5), 1225–1241 (2016)CrossRefGoogle Scholar
  97. 97.
    G. Wang, Nanotechnology: The new features, arXiv preprint arXiv. 1812.04939 (2018)Google Scholar
  98. 98.
    R.T. Vang et al., Scanning tunneling microscopy as a tool to study catalytically relevant model systems. Chem. Soc. Rev. 37(10), 2191–2203 (2008)CrossRefGoogle Scholar
  99. 99.
    R.J.B. Balaguru, B.G. Jeyaprakash, Quantum size effect, electrical conductivity and quantum transport, NPTEL, India (2013)Google Scholar
  100. 100.
    M.A. García, Surface plasmons in metallic nanoparticles: Fundamentals and applications. J. Phys. D. Appl. Phys. 44(28), 283001 (2011)CrossRefGoogle Scholar
  101. 101.
    S.A.M. Rahman, et al., Localized surface plasmon resonance in bimetallic core-shell nanoparticles. Diss. BRAC University, 2016Google Scholar
  102. 102.
    S. Horikoshi, N. Serpone, Introduction to nanoparticles, Microwaves in Nanoparticle Synthesis: Fundamentals and Applications, (Wiley‐VCH Verlag, Germany 2013), pp. 1–24Google Scholar
  103. 103.
    X.L. Hu, O. Takai, N. Saito, Synthesis of gold nanoparticles by solution plasma sputtering in various solvents. Journal of Physics: Conference Series 417(1), 2030. IOP Publishing (2013)Google Scholar
  104. 104.
    D. Vollath, F.D. Fischer, D. Holec, Surface energy of nanoparticles–influence of particle size and structure. Beilstein J. Nanotechnol. 9(1), 2265–2276 (2018)CrossRefGoogle Scholar
  105. 105.
    M. Goyal, Shape, size and phonon scattering effect on the thermal conductivity of nanostructures. Pramana 91(6), 87 (2018)CrossRefGoogle Scholar
  106. 106.
    A. Kshirsagar, N. Kumbhojkar, Empirical pseudo-potential studies on electronic structure of semiconducting quantum dots. Bull. Mater. Sci. 31(3), 297–307 (2008)CrossRefGoogle Scholar
  107. 107.
    X.-F. Zhang et al., Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci. 17(9), 1534 (2016)CrossRefGoogle Scholar
  108. 108.
    A. Useinov et al., Anomalous tunnel magnetoresistance and spin transfer torque in magnetic tunnel junctions with embedded nanoparticles. Sci. Rep. 5, 18026 (2015)CrossRefGoogle Scholar
  109. 109.
    D. Guo, G. Xie, J. Luo, Mechanical properties of nanoparticles: basics and applications. J. Phys. D Appl. Phys. 47(1), 013001 (2013)CrossRefGoogle Scholar
  110. 110.
    N. Kumar, S. Kumbhat, Chapter 6, in Concise concepts of nanoscience and nanomaterials, (Sceintific Publishers, Jodhpur, India, 2018)Google Scholar
  111. 111.
    A. Wei, Calixarene-encapsulated nanoparticles: Self-assembly into functional nanomaterials. Chem. Commun. (15), 1581–1591 (2006)Google Scholar
  112. 112.
    A.L. Butcher, G.S. Offeddu, M.L. Oyen, Nanofibrous hydrogel composites as mechanically robust tissue engineering scaffolds. Trends Biotechnol. 32(11), 564–570 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Narendra Kumar
    • 1
  • Ambesh Dixit
    • 2
  1. 1.Defence Laboratory Jodhpur (DRDO)JodhpurIndia
  2. 2.Department of Physics & Center for Solar Energy DepartmentIndian Institute of Technology JodhpurJodhpurIndia

Personalised recommendations