Molecular Pathology of Sinonasal Tumors

  • Mario A. HermsenEmail author
  • C. Riobello
  • R. García-Marín
  • V. N. Cabal
  • L. Suárez-Fernández
  • F. López
  • J. L. Llorente


Recent years have seen a growing number of publications on genetic aberrations in sinonasal cancer. On the one hand, due to the fact that these are rare tumors, the available data are not always conclusive, and of some types there are hardly any data. On the other hand, more and more sinonasal tumor types are becoming classified on the basis of characterizing genetic features, for example, chromosomal translocation t(15;19) NUT-BRD4 in NUT carcinoma, gene copy number deletion in SMARCB1 (INI1)-deficient carcinoma, or viral infection in HPV-related adenoid cystic-like carcinoma. In addition, highly frequent gene mutations specific to one tumor type have been reported, such as EGFR exon 20 mutations in squamous cell carcinoma associated with inverted papilloma and IDH2 mutations in undifferentiated carcinoma. This chapter will present an overview of genetic changes reported in epithelial, neuroendocrine, and mesenchymal sinonasal cancer, more or less ordered according to the number of available genetic studies.


Sinonasal cancer Diagnosis Prognosis Therapeutic marker Sequencing Mutation Chromosomal translocation Copy number alteration Methylation 


  1. 1.
    El-Naggar AK, et al. WHO classification of tumors pathology and genetics of head and neck tumors. 4th ed. Lyon: IARC Press; 2017.Google Scholar
  2. 2.
    Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Llorente JL, López F, Suárez C, Hermsen M. Sinonasal carcinoma: clinical, pathological and genetic advances for new therapeutic opportunities. Nat Rev Clin Oncol. 2014;11(8):460–72.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    López F, Llorente JL, García-Inclán C, Alonso-Guervós M, Cuesta-Albalad MP, Fresno MF, Alvarez-Marcos C, Suárez C, Hermsen MA. Genomic profiling of sinonasal squamous cell carcinoma. Head Neck. 2011;33(2):145–53.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    García-Inclán C, López-Hernández A, Alonso-Guervós M, Allonca E, Potes S, López F, Llorente JL, Hermsen M. Establishment and genetic characterization of six unique tumor cell lines as preclinical models for sinonasal squamous cell carcinoma. Sci Rep. 2014;4:4925.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    López F, Llorente JL, Martín Oviedo C, Vivanco B, Álvarez Marcos C, García-Inclán C, Scola B, Hermsen MA. Gene amplification and protein overexpression of EGFR and ERBB2 in sinonasal squamous cell carcinoma. Cancer. 2012;118(7):1818–26.PubMedCrossRefGoogle Scholar
  8. 8.
    Schröck A, Göke F, Wagner P, et al. Fibroblast growth factor receptor-1 as a potential therapeutic target in sinonasal cancer. Head Neck. 2014;36(9):1253–7.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Schröck A, Göke F, Wagner P, Bode M, Franzen A, Braun M, Huss S, Agaimy A, Ihrler S, Menon R, Kirsten R, Kristiansen G, Bootz F, Lengerke C, Perner S. Sex determining region Y-Box 2 (SOX2) amplification is an independent indicator of disease recurrence in sinonasal cancer. PLoS One. 2013;8(3):e59201.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Holmila R, Bornholdt J, Heikkilä P, Suitiala T, Févotte J, Cyr D, Hansen J, Snellman SM, Dictor M, Steiniche T, Schlünssen V, Schneider T, Pukkala E, Savolainen K, Wolff H, Wallin H, Luce D, Husgafvel-Pursiainen K. Mutations in TP53 tumor suppressor gene in wood dust-related sinonasal cancer. Int J Cancer. 2010;127(3):578–88.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    López F, García Inclán C, Pérez-Escuredo J, Alvarez Marcos C, Scola B, Suárez C, Llorente JL, Hermsen MA. KRAS and BRAF mutations in sinonasal cancer. Oral Oncol. 2012;48(8):692–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Bornholdt J, Hansen J, Steiniche T, Dictor M, Antonsen A, Wolff H, Schlünssen V, Holmila R, Luce D, Vogel U, Husgafvel-Pursiainen K, Wallin H. K-ras mutations in sinonasal cancers in relation to wood dust exposure. BMC Cancer. 2008;8:53.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Udager AM, McHugh JB, Betz BL, Montone KT, Livolsi VA, Seethala RR, Yakirevich E, Iwenofu OH, Perez-Ordonez B, DuRoss KE, Weigelin HC, Lim MS, Elenitoba-Johnson KS, Brown NA. Activating KRAS mutations are characteristic of oncocytic sinonasal papilloma and associated sinonasal squamous cell carcinoma. J Pathol. 2016;239(4):394–8.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Udager AM, Rolland DCM, McHugh JB, Betz BL, Murga-Zamalloa C, Carey TE, Marentette LJ, Hermsen MA, DuRoss KE, Lim MS, Elenitoba-Johnson KSJ, Brown NA. High frequency targetable EGFR mutations in inverted sinonasal papilloma and associated sinonasal squamous cell carcinoma. Cancer Res. 2015;75(13):2600–6.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Udager AM, McHugh JB, Goudsmit CM, Weigelin HC, Lim MS, Elenitoba-Johnson KSJ, Betz BL, Carey TE, Brown NA. Human papillomavirus (HPV) and somatic EGFR mutations are essential, mutually exclusive oncogenic mechanisms for inverted sinonasal papillomas and associated sinonasal squamous cell carcinomas. Ann Oncol. 2018;29(2):466–71.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Sahnane N, Ottini G, Turri-Zanoni M, Furlan D, Battaglia P, Karligkiotis A, Albeni C, Cerutti R, Mura E, Chiaravalli AM, Castelnuovo P, Sessa F, Facco C. Comprehensive analysis of HPV infection, EGFR exon 20 mutations and LINE1 hypomethylation as risk factors for malignant transformation of sinonasal-inverted papilloma to squamous cell carcinoma. Int J Cancer. 2019;144(6):1313–20.PubMedCrossRefGoogle Scholar
  17. 17.
    Sasaki E, Nishikawa D, Hanai N, Hasegawa Y, Yatabe Y. Sinonasal squamous cell carcinoma and EGFR mutations: a molecular footprint of a benign lesion. Histopathology. 2018;73(6):953–62.PubMedCrossRefGoogle Scholar
  18. 18.
    Stransky N, Egloff AM, Tward AD, Kostic AD, Cibulskis K, Sivachenko A, Kryukov GV, Lawrence MS, Sougnez C, McKenna A, Shefler E, Ramos AH, Stojanov P, Carter SL, Voet D, Cortés ML, Auclair D, Berger MF, Saksena G, Guiducci C, Onofrio RC, Parkin M, Romkes M, Weissfeld JL, Seethala RR, Wang L, Rangel-Escareño C, Fernandez-Lopez JC, Hidalgo-Miranda A, Melendez-Zajgla J, Winckler W, Ardlie K, Gabriel SB, Meyerson M, Lander ES, Getz G, Golub TR, Garraway LA, Grandis JR. The mutational landscape of head and neck squamous cell carcinoma. Science. 2011;333(6046):1157–60.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Martínez JG, Pérez-Escuredo J, López F, Suárez C, Alvarez-Marcos C, Llorente JL, Hermsen MA. Microsatellite instability analysis of sinonasal carcinomas. Otolaryngol Head Neck Surg. 2009;140(1):55–60.PubMedCrossRefGoogle Scholar
  20. 20.
    Uryu H, Oda Y, Shiratsuchi H, et al. Microsatellite instability and proliferating activity in sinonasal carcinoma: molecular genetic and immunohistochemical comparison with oral squamous cell carcinoma. Oncol Rep. 2005;14:1133–42.PubMedGoogle Scholar
  21. 21.
    Costales M, López-Hernández A, García-Inclán C, Vivanco B, López F, Llorente JL, Hermsen MA. Gene methylation profiling in sinonasal adenocarcinoma and squamous cell carcinoma. Otolaryngol Head Neck Surg. 2016;155(5):808–15.PubMedCrossRefGoogle Scholar
  22. 22.
    Syrjänen K, Syrjänen S. Detection of human papillomavirus in sinonasal papillomas: systematic review and meta-analysis. Laryngoscope. 2013;123(1):181–92.CrossRefGoogle Scholar
  23. 23.
    Bishop JA, Guo TW, Smith DF, Wang H, Ogawa T, Pai SI, Westra WH. Human papillomavirus-related carcinomas of the sinonasal tract. Am J Surg Pathol. 2013;37(2):185–92.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Gray ST. Treatment outcomes and prognostic factors, including human papillomavirus, for sinonasal undifferentiated carcinoma: a retrospective review. Head Neck. 2015;37:366–74.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    El-Mofty SK, Lu DW. Prevalence of high-risk human papillomavirus DNA in nonkeratinizing (cylindrical cell) carcinoma of the sinonasal tract: a distinct clinicopathologic and molecular disease entity. Am J Surg Pathol. 2005;29:1367–72.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Alos L, Moyano S, Nadal A, Alobid I, Blanch JL, Ayala E, Lloveras B, Quint W, Cardesa A, Ordi J. Human papillomaviruses are identified in a subgroup of sinonasal squamous cell carcinomas with favorable outcome. Cancer. 2009;115:2701–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Larque AB, Hakim S, Ordi J, Nadal A, Diaz A, del Pino M, Marimon L, Alobid I, Cardesa A, Alos L. High-risk human papillomavirus is transcriptionally active in a subset of sinonasal squamous cell carcinomas. Mod Pathol. 2014;27(3):343–51.PubMedCrossRefGoogle Scholar
  28. 28.
    Laco J, Sieglová K, Vošmiková H, Dundr P, Němejcová K, Michálek J, Čelakovský P, Chrobok V, Mottl R, Mottlová A, Tuček L, Slezák R, Chmelařová M, Sirák I, Vošmik M, Ryška A. The presence of high-risk human papillomavirus (HPV) E6/E7 mRNA transcripts in a subset of sinonasal carcinomas is evidence of involvement of HPV in its etiopathogenesis. Virchows Arch. 2015;467:405–15.PubMedCrossRefGoogle Scholar
  29. 29.
    Ariza M, Llorente JL, Alvarez-Marcas C, Baragaño L, Salas A, Rodriguez Prado N, Hermsen M, Suárez C, Sampedro A. Comparative genomic hybridization of primary sinonasal adenocarcinomas. Cancer. 2004;100(2):335–41.PubMedCrossRefGoogle Scholar
  30. 30.
    Korinth D, Pacyna-Gengelbach M, Deutschmann N, Hattenberger S, Bockmühl U, Dietel M, Schroeder HG, Donhuijsen K, Petersen I. Chromosomal imbalances in wood dust-related adenocarcinomas of the inner nose and their associations with pathological parameters. J Pathol. 2005;207(2):207–15.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Hermsen MA, Llorente JL, Pérez-Escuredo J, López F, Ylstra B, Alvarez-Marcos C, Suárez C. Genome-wide analysis of genetic changes in intestinal-type sinonasal adenocarcinoma. Head Neck. 2009;31(3):290–7.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Pérez-Escuredo J, López-Hernández A, Costales M, López F, Potes Ares S, Vivanco B, Llorente JL, Hermsen MA. Recurrent DNA copy number alterations in intestinal-type sinonasal adenocarcinoma. Rhinology. 2016;54(3):278–86.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    López-Hernández A, Pérez-Escuredo J, Vivanco B, García-Inclán C, Potes-Ares S, Cabal VN, Riobello C, Costales M, López F, Llorente JL, Hermsen MA. Genomic profiling of intestinal-type sinonasal adenocarcinoma reveals subgroups of patients with distinct clinical outcomes. Head Neck. 2018;40(2):259–73.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Franchi A, Fondi C, Paglierani M, Pepi M, Gallo O, Santucci M. Epidermal growth factor receptor expression and gene copy number in sinonasal intestinal type adenocarcinoma. Oral Oncol. 2009;45:835–8.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Franchi A, Innocenti DR, Palomba A, et al. Low prevalence of K-RAS, EGFR and BRAF mutations in sinonasal adenocarcinomas. Implications for anti-EGFR treatments. Pathol Oncol Res. 2014;20:571–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Projetti F, Mesturoux L, Coulibaly B, et al. Study of MET protein levels and MET gene copy number in 72 sinonasal intestinal-type adenocarcinomas. Head Neck. 2015;37(11):1563–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Pacheco E, Llorente JL, López-Hernández A, et al. Absence of chromosomal translocations and protein expression of ALK in sinonasal adenocarcinomas. Acta Otorrinolaringol Esp. 2017;68(1):9–14.PubMedCrossRefGoogle Scholar
  38. 38.
    Franchi A, Palomba A, Fondi C, et al. Immunohistochemical investigation of tumorigenic pathways in sinonasal intestinal-type adenocarcinoma. A tissue microarray analysis of 62 cases. Histopathology. 2011;59:98–105.PubMedCrossRefGoogle Scholar
  39. 39.
    Perrone F, Oggionni M, Birindelli S, et al. TP53, p14ARF, p16INK4a and H-ras gene molecular analysis in intestinal-type adenocarcinoma of the nasal cavity and paranasal sinuses. Int J Cancer. 2003;105:196–203.PubMedCrossRefGoogle Scholar
  40. 40.
    Yom SS, Rashid A, Rosenthal DI, et al. Genetic analysis of sinonasal adenocarcinoma phenotypes: distinct alterations of histogenetic significance. Mod Pathol. 2005;18(3):315–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Pérez-Escuredo J, Martínez JG, Vivanco B, et al. Wood dust-related mutational profile of TP53 in intestinal-type sinonasal adenocarcinoma. Hum Pathol. 2012;43:1894–901.PubMedCrossRefGoogle Scholar
  42. 42.
    Bossi P, Perrone F, Miceli R, et al. TP53 status as guide for the management of ethmoid sinus intestinal-type adenocarcinoma. Oral Oncol. 2013;49:413–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Pérez-Escuredo J, García Martínez J, García-Inclán C, Vivanco B, Costales M, Álvarez Marcos C, Llorente JL, Hermsen MA. Establishment and genetic characterization of an immortal tumor cell line derived from intestinal-type sinonasal adenocarcinoma. Cell Oncol (Dordr). 2011;34(1):23–31.CrossRefGoogle Scholar
  44. 44.
    Perez-Ordonez B, Huynh NN, Berean KW, Jordan RC. Expression of mismatch repair proteins, β-catenin, and cadherin in intestinal-type sinonasal adenocarcinoma. J Clin Pathol. 2004;57(10):1080–3.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Díaz-Molina JP, Llorente JL, Vivanco B, Martínez-Camblor P, Fresno MF, Pérez-Escuredo J, Álvarez-Marcos C, Hermsen MA. Wnt-pathway activation in intestinal-type sinonasal adenocarcinoma. Rhinology. 2011;49(5):593–9.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Frattini M, Perrone F, Suardi S, Balestra D, Caramuta S, Colombo F, Licitra L, Cantù G, Pierotti MA, Pilotti S. Phenotype-genotype correlation: challenge of intestinal-type adenocarcinoma of the nasal cavity and paranasal sinuses. Head Neck. 2006;28(10):909–15.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    García-Inclán C, López F, Pérez-Escuredo J, Cuesta-Albalad MP, Vivanco B, Centeno I, Balbín M, Suárez C, Llorente JL, Hermsen MA. EGFR status and KRAS/BRAF mutations in intestinal-type sinonasal adenocarcinomas. Cell Oncol (Dordr). 2012;35(6):443–50.CrossRefGoogle Scholar
  48. 48.
    Projetti F, Durand K, Chaunavel A, et al. Epidermal growth factor receptor expression and KRAS and BRAF mutations: study of 39 sinonasal intestinal-type adenocarcinomas. Hum Pathol. 2013;44:2116–25.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    López-Hernández A, Vivanco B, Franchi A, Bloemena E, Cabal VN, Potes-Ares S, Riobello C, García-Inclán C, López F, Llorente JL, Hermsen M. Genetic profiling of poorly differentiated sinonasal tumors. Sci Rep. 2018;8(1):3998.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Jo VY, Chau NG, Hornick JL, Krane JF, Sholl LM. Recurrent IDH2 R172X mutations in sinonasal undifferentiated carcinoma. Mod Pathol. 2017;30(5):650–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Dogan S, Chute DJ, Xu B, Ptashkin RN, Chandramohan R, Casanova-Murphy J, Nafa K, Bishop JA, Chiosea SI, Stelow EB, Ganly I, Pfister DG, Katabi N, Ghossein RA, Berger MF. Frequent IDH2 R172 mutations in undifferentiated and poorly-differentiated sinonasal carcinomas. J Pathol. 2017;242(4):400–8.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Capper D, Engel NW, Stichel D, Lechner M, Glöss S, Schmid S, Koelsche C, Schrimpf D, Niesen J, Wefers AK, Jones DTW, Sill M, Weigert O, Ligon KL, Olar A, Koch A, Forster M, Moran S, Tirado OM, Sáinz-Jaspeado M, Mora J, Esteller M, Alonso J, Del Muro XG, Paulus W, Felsberg J, Reifenberger G, Glatzel M, Frank S, Monoranu CM, Lund VJ, von Deimling A, Pfister S, Buslei R, Ribbat-Idel J, Perner S, Gudziol V, Meinhardt M, Schüller U. DNA methylation-based reclassification of olfactory neuroblastoma. Acta Neuropathol. 2018;136(2):255–71.PubMedCrossRefGoogle Scholar
  53. 53.
    Takahashi Y, Kupferman ME, Bell D, Jiffar T, Lee JG, Xie TX, Li NW, Zhao M, Frederick MJ, Gelbard A, Myers JN, Hanna EY. Establishment and characterization of novel cell lines from sinonasal undifferentiated carcinoma. Clin Cancer Res. 2012;18(22):6178–87.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Gelbard A, Hale KS, Takahashi Y, Davies M, Kupferman ME, El-Naggar AK, Myers JN, Hanna EY. Molecular profiling of sinonasal undifferentiated carcinoma. Head Neck. 2014;36(1):15–21.PubMedCrossRefGoogle Scholar
  55. 55.
    Mito JK, Bishop JA, Sadow PM, Stelow EB, Faquin WC, Mills SE, Krane JF, French CA, Fletcher CDM, Hornick JL, Sholl LM, Jo VY. Immunohistochemical detection and molecular characterization of IDH-mutant sinonasal undifferentiated carcinomas. Am J Surg Pathol. 2018;42(8):1067–75.PubMedCrossRefGoogle Scholar
  56. 56.
    Lu C, Ward PS, Kapoor GS, Rohle D, Turcan S, Abdel-Wahab O, Edwards CR, Khanin R, Figueroa ME, Melnick A, Wellen KE, O’Rourke DM, Berger SL, Chan TA, Levine RL, Mellinghoff IK, Thompson CB. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature. 2012;483(7390):474–8.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Jackson EM, Sievert AJ, Gai X, Hakonarson H, Judkins AR, Tooke L, Perin JC, Xie H, Shaikh TH, Biegel JA. Genomic analysis using high-density single nucleotide polymorphism-based oligonucleotide arrays and multiplex ligation-dependent probe amplification provides a comprehensive analysis of INI1/SMARCB1 in malignant rhabdoid tumors. Clin Cancer Res. 2009;15(6):1923–30.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Agaimy A, Hartmann A, Antonescu CR, Chiosea SI, El-Mofty SK, Geddert H, Iro H, Lewis JS Jr, Märkl B, Mills SE, Riener MO, Robertson T, Sandison A, Semrau S, Simpson RH, Stelow E, Westra WH, Bishop JA. SMARCB1 (INI-1)-deficient sinonasal carcinoma: a series of 39 cases expanding the morphologic and clinicopathologic spectrum of a recently described entity. Am J Surg Pathol. 2017;41(4):458–71.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Kohashi K, Oda Y, Yamamoto H, et al. Reduced expression of SMARCB1/INI1 protein in synovial sarcoma. Mod Pathol. 2010;23:981–90.PubMedCrossRefGoogle Scholar
  60. 60.
    French CA, Miyoshi I, Kubonishi I, Grier HE, Perez-Atayde AR, Fletcher JA. BRD4-NUT fusion oncogene: a novel mechanism in aggressive carcinoma. Cancer Res. 2003;63(2):304–7.PubMedGoogle Scholar
  61. 61.
    French CA, Ramirez CL, Kolmakova J, Hickman TT, Cameron MJ, Thyne ME, Kutok JL, Toretsky JA, Tadavarthy AK, Kees UR, Fletcher JA, Aster JC. BRD-NUT oncoproteins: a family of closely related nuclear proteins that block epithelial differentiation and maintain the growth of carcinoma cells. Oncogene. 2008;27(15):2237–42.PubMedCrossRefGoogle Scholar
  62. 62.
    French C. NUT midline carcinoma. Nat Rev Cancer. 2014;14:149–50.PubMedCrossRefGoogle Scholar
  63. 63.
    Alekseyenko AA, Walsh EM, Zee BM, Pakozdi T, Hsi P, Lemieux ME, Dal Cin P, Ince TA, Kharchenko PV, Kuroda MI, French CA. Ectopic protein interactions within BRD4-chromatin complexes drive oncogenic megadomain formation in NUT midline carcinoma. Proc Natl Acad Sci U S A. 2017;114(21):E4184–92.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Shiota H, Elya JE, Alekseyenko AA, Chou PM, Gorman SA, Barbash O, Becht K, Danga K, Kuroda MI, Nardi V, French CA. ‘Z4’ complex member fusions in NUT carcinoma: Implications for a novel oncogenic mechanism. Mol Cancer Res. 2018;16(12):1826–33.PubMedCrossRefGoogle Scholar
  65. 65.
    Schaefer IM, Dal Cin P, Landry LM, Fletcher CDM, Hanna GJ, French CA. CIC-NUTM1 fusion: a case which expands the spectrum of NUT-rearranged epithelioid malignancies. Genes Chromosomes Cancer. 2018;57(9):446–51.PubMedCrossRefGoogle Scholar
  66. 66.
    French CA. NUT Carcinoma: clinicopathologic features, pathogenesis, and treatment. Pathol Int. 2018;68(11):583–95.PubMedCrossRefGoogle Scholar
  67. 67.
    Lee JK, Louzada S, An Y, et al. Complex chromosomal rearrangements by single catastrophic pathogenesis in NUT midline carcinoma. Ann Oncol. 2017;28:890–7.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Shah AA, Lamarre ED, Bishop JA. Human papillomavirus-related multiphenotypic sinonasal carcinoma: a case report documenting the potential for very late tumor recurrence. Head Neck Pathol. 2018;12:623–8.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Adamane SA, Mittal N, Teni T, Pawar S, Waghole R, Bal M. Human papillomavirus-related multiphenotypic sinonasal carcinoma with unique HPV type 52 association: a case report with review of literature. Head Neck Pathol. 2019;13(3):331–8.PubMedCrossRefGoogle Scholar
  70. 70.
    Bishop JA, Ogawa T, Stelow EB, Moskaluk CA, Koch WM, Pai SI, et al. Human papillomavirus-related carcinoma with adenoid cystic-like features: a peculiar variant of head and neck cancer restricted to the sinonasal tract. Am J Surg Pathol. 2013;37:836–44.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Bishop JA, Andreasen S, Hang JF, Bullock MJ, Chen TY, Franchi A, et al. HPV-related multiphenotypic sinonasal carcinoma: an expanded series of 49 cases of the tumor formerly known as HPV-related carcinoma with adenoid cystic carcinoma-like features. Am J Surg Pathol. 2017;41:1690–701.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Hang JF, Hsieh MS, Li WY, Chen JY, Lin SY, Liu SH, et al. Human papillomavirus-related carcinoma with adenoid cysticlike features: a series of five cases expanding the pathological spectrum. Histopathology. 2017;71(6):887–96.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Andreasen S, Skalova A, Agaimy A, Bishop JA, Laco J, Leivo I, et al. ETV6 gene rearrangements characterize a morphologically distinct subset of sinonasal low-grade non–intestinal-type adenocarcinoma: a novel translocation-associated carcinoma restricted to the sinonasal tract. Am J Surg Pathol. 2017;41:1552–60.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Andreasen S, Kiss K, Melchior LC, Laco J. The ETV6-RET gene fusion is found in ETV6-rearranged low-grade sinonasal adenocarcinoma without NTRK3 involvement. Am J Surg Pathol. 2018;42:985–8.PubMedCrossRefGoogle Scholar
  75. 75.
    Skalova A, Vanecek T, Martinek P, Weinreb I, Stevens TM, Simpson RHW, et al. Molecular profiling of mammary analog secretory carcinoma revealed a subset of tumors harboring a novel ETV6-RET translocation: report of 10 cases. Am J Surg Pathol. 2018;42:234–46.PubMedCrossRefGoogle Scholar
  76. 76.
    Baneckova M, Agaimy A, Andreasen S, Vanecek T, Steiner P, Slouka D, et al. Mammary analog secretory carcinoma of the nasal cavity. Am J Surg Pathol. 2018;42:735–43.PubMedCrossRefGoogle Scholar
  77. 77.
    Soon GST, Chang KTE, Kuick CH, Petersson F. A case of nasal low-grade non-intestinal-type adenocarcinoma with aberrant CDX2 expression and a novel SYN2-PPARG gene fusion in a 13-year-old girl. Virchows Arch. 2019;474(5):619–23.PubMedCrossRefGoogle Scholar
  78. 78.
    Villatoro TM, Mardekian SK. Two cases of sinonasal nonintestinal-type adenocarcinoma with squamoid morules expressing nuclear β-catenin and CDX2: a curious morphologic finding supported by molecular analysis. Case Rep Pathol. 2018;2018:8741017.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Vranic S, Caughron SK, Djuricic S, Bilalovic N, Zaman S, Suljevic I, Lydiatt WM, Emanuel J, Gatalica Z. Hamartomas, teratomas and teratocarcinosarcomas of the head and neck: Report of 3 new cases with clinico-pathologic correlation, cytogenetic analysis, and review of the literature. BMC Ear Nose Throat Disord. 2008;8:8.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Thomas J, Adegboyega P, Iloabachie K, Mooring JW, Lian T. Sinonasal teratocarcinosarcoma with yolk sac elements: a neoplasm of somatic or germ cell origin? Ann Diagn Pathol. 2011;15(2):135–9.PubMedCrossRefGoogle Scholar
  81. 81.
    Birkeland AC, Burgin SJ, Yanik M, Scott MV, Bradford CR, McHugh JB, McLean SA, Sullivan SE, Nor JE, McKean EL, Brenner JC. Pathogenetic analysis of sinonasal teratocarcinosarcomas reveal actionable β-catenin overexpression and a β-catenin mutation. J Neurol Surg B Skull Base. 2017;78(4):346–52.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Franchi A, Rocchetta D, Palomba A, Innocenti DRD, Castiglione F, Spinelli G. Primary combined neuroendocrine and squamous cell carcinoma of the maxillary sinus: report of a case with immunohistochemical and molecular characterization. Head Neck Pathol. 2015;9(1):107–13.CrossRefGoogle Scholar
  83. 83.
    Bockmuhl U, You X, Pacyna-Gengelbach M, et al. CGH pattern of esthesioneuroblastoma and their metastases. Brain Pathol. 2004;14:158–63.PubMedCrossRefGoogle Scholar
  84. 84.
    Lazo de la Vega L, McHugh JB, Cani AK, Kunder K, Walocko FM, Liu CJ, Hovelson DH, Robinson D, Chinnaiyan AM, Tomlins SA, Harms PW. Comprehensive molecular profiling of olfactory neuroblastoma identifies potentially targetable FGFR3 amplifications. Mol Cancer Res. 2017;15(11):1551–7.PubMedCrossRefGoogle Scholar
  85. 85.
    Holland H, Koschny R, Krupp W, et al. Comprehensive cytogenetic characterization of an esthesioneuroblastoma. Cancer Genet Cytogenet. 2007;173:89–96.PubMedCrossRefGoogle Scholar
  86. 86.
    Riazimand SH, Brieger J, Jacob R, et al. Analysis of cytogenetic aberrations in esthesioneuroblastomas by comparative genomic hybridization. Cancer Genet Cytogenet. 2002;136:53–7.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Guled M, Myllykangas S, Frierson HFJ, et al. Array comparative genomic hybridization analysis of olfactory neuroblastoma. Mod Pathol. 2008;21:770–8.PubMedCrossRefGoogle Scholar
  88. 88.
    Valli R, De Bernardi F, Frattini A, Volpi L, Bignami M, Facchetti F, Pasquali F, Castelnuovo P, Maserati E. Comparative genomic hybridization on microarray (a-CGH) in olfactory neuroblastoma: analysis of ten cases and review of the literature. Genes Chromosomes Cancer. 2015;54(12):771–5.PubMedCrossRefGoogle Scholar
  89. 89.
    Gay LM, Kim S, Fedorchak K, et al. Comprehensive genomic profiling of esthesioneuroblastoma reveals additional treatment options. Oncologist. 2017;22(7):834–42.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Weiss GJ, Liang WS, Izatt T, et al. Paired tumor and normal whole genome sequencing of metastatic olfactory neuroblastoma. PLoS One. 2012;7:e37029.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Cha S, Lee J, Shin J-Y, Kim J-Y, Sim SH, Keam B, Kim TM, Kim D-W, Heo DS, Lee S-H, Kim J-I. Clinical application of genomic profiling to find druggable targets for adolescent and young adult (AYA) cancer patients with metastasis. BMC Cancer. 2016;16:170.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Wang L, Ding Y, Wei L, Zhao D, Wang R, Zhang Y, Gu X, Wang Z. Recurrent olfactory neuroblastoma treated with cetuximab and sunitinib: a case report. Medicine (Baltimore). 2016;95:e3536.CrossRefGoogle Scholar
  93. 93.
    Weiss SW, Goldblum JR. Enzinger and Weiss’s soft tissue tumors. 5th ed. Philadelphia: Mosby Elsevier; 2008.Google Scholar
  94. 94.
    Hayward NK, Wilmott JS, Waddell N, Johansson PA, Field MA, Nones K, Patch AM, Kakavand H, Alexandrov LB, Burke H, Jakrot V, Kazakoff S, Holmes O, Leonard C, Sabarinathan R, Mularoni L, Wood S, Xu Q, Waddell N, Tembe V, Pupo GM, De Paoli-Iseppi R, Vilain RE, Shang P, LMS L, Dagg RA, Schramm SJ, Pritchard A, Dutton-Regester K, Newell F, Fitzgerald A, Shang CA, Grimmond SM, Pickett HA, Yang JY, Stretch JR, Behren A, Kefford RF, Hersey P, Long GV, Cebon J, Shackleton M, Spillane AJ, RPM S, López-Bigas N, Pearson JV, Thompson JF, Scolyer RA, Mann GJ. Whole-genome landscapes of major melanoma subtypes. Nature. 2017;545(7653):175–80.PubMedCrossRefGoogle Scholar
  95. 95.
    Van Dijk M, Sprenger S, Rombout P, Marres H, Kaanders J, Jeuken J, Ruiter D. Distinct chromosomal aberrations in sinonasal mucosal melanoma as detected by comparative genomic hybridization. Genes Chromosomes Cancer. 2003;36(2):151–8.PubMedCrossRefGoogle Scholar
  96. 96.
    Zhou R, Shi C, Tao W, Li J, Wu J, Han Y, Yang G, Gu Z, Xu S, Wang Y, Wang L, Wang Y, Zhou G, Zhang C, Zhang Z, Sun S. Analysis of mucosal melanoma whole-genome landscapes reveals clinically relevant genomic aberrations. Clin Cancer Res. 2019;25(12):3548–60.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Curtin JA, Fridlyand J, Kageshita T, Patel HN, Busam KJ, Kutzner H, Cho KH, Aiba S, Bröcker EB, LeBoit PE, Pinkel D, Bastian BC. Distinct sets of genetic alterations in melanoma. N Engl J Med. 2005;353(20):2135–47.PubMedCrossRefGoogle Scholar
  98. 98.
    Lyu J, Song Z, Chen J, Shepard MJ, Song H, Ren G, et al. Whole-exome sequencing of oral mucosal melanoma reveals mutational profile and therapeutic targets. J Pathol. 2018;244:358–66.PubMedCrossRefGoogle Scholar
  99. 99.
    Zebary A, Jangard M, Omholt K, et al. KIT, NRAS and BRAF mutations in sinonasal mucosal melanoma: a study of 56 cases. Br J Cancer. 2013;109:559–64.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Amit M, Tam S, Abdelmeguid AS, Roberts DB, Takahashi Y, Raza SM, Su SY, Kupferman ME, DeMonte F, Hanna EY. Mutation status among patients with sinonasal mucosal melanoma and its impact on survival. Br J Cancer. 2017;116(12):1564–71.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Colombino M, Lissia A, Franco R, Botti G, Ascierto PA, Manca A, Sini MC, Pisano M, Paliogiannis P, Tanda F, Palmieri G, Cossu A. Unexpected distribution of cKIT and BRAF mutations among southern Italian patients with sinonasal melanoma. Dermatology. 2013;226(3):279–84.PubMedCrossRefGoogle Scholar
  102. 102.
    Jangard M, Zebary A, Ragnarsson-Olding B, Hansson J. TERT promoter mutations in sinonasal malignant melanoma: a study of 49 cases. Melanoma Res. 2014;25:185–8.CrossRefGoogle Scholar
  103. 103.
    Turri-Zanoni M, Medicina D, Lombardi D, et al. Sinonasal mucosal melanoma: molecular profile and therapeutic implications from a series of 32 cases. Head Neck. 2013;35:1066–77.PubMedCrossRefGoogle Scholar
  104. 104.
    Öztürk Sari Ş, Yilmaz İ, Taşkin OÇ, Narli G, Şen F, Çomoğlu Ş, Firat P, Bİlgİç B, Yilmazbayhan D, Özlük Y, Büyükbabanİ N. BRAF, NRAS, KIT, TERT, GNAQ/GNA11 mutation profile analysis of head and neck mucosal melanomas: a study of 42 cases. Pathology. 2017;49(1):55–61.PubMedCrossRefGoogle Scholar
  105. 105.
    Wroblewska JP, Mull J, Wu CL, Fujimoto M, Ogawa T, Marszalek A, Hoang MP. SF3B1, NRAS, KIT, and BRAF Mutation; CD117 and cMYC Expression; and Tumoral pigmentation in sinonasal melanomas: an analysis with newly found molecular alterations and some population-based molecular differences. Am J Surg Pathol. 2019;43(2):168–77.PubMedCrossRefGoogle Scholar
  106. 106.
    Maldonado-Mendoza J, Ramírez-Amador V, Anaya-Saavedra G, Ruíz-García E, Maldonado-Martínez H, Fernández Figueroa E, Meneses-García A. CD117 immunoexpression in oral and sinonasal mucosal melanoma does not correlate with somatic driver mutations in the MAPK pathway. J Oral Pathol Med. 2019;48(5):382–8.PubMedCrossRefGoogle Scholar
  107. 107.
    Hintzsche JD, Gorden NT, Amato CM, Kim J, Wuensch KE, Robinson SE, et al. Whole-exome sequencing identifies recurrent SF3B1 R625 mutation and comutation of NF1 and KIT in mucosal melanoma. Melanoma Res. 2017;27:189–99.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Cosgarea I, Ugurel S, Sucker A, Livingstone E, Zimmer L, Ziemer M, Utikal J, Mohr P, Pfeiffer C, Pföhler C, Hillen U, Horn S, Schadendorf D, Griewank KG, Roesch A. Targeted next generation sequencing of mucosal melanomas identifies frequent NF1 and RAS mutations. Oncotarget. 2017;8(25):40683–92.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Lyu J, Wu Y, Li C, Wang R, Song H, Ren G, et al. Mutation scanning of BRAF, NRAS, KIT, and GNAQ/GNA11 in oral mucosal melanoma: a study of 57 cases. J Oral Pathol Med. 2016;45:295–301.PubMedCrossRefGoogle Scholar
  110. 110.
    Kim HS, Jung M, Kang HN, Kim H, Park CW, Kim SM, Shin SJ, Kim SH, Kim SG, Kim EK, Yun MR, Zheng Z, Chung KY, Greenbowe J, Ali SM, Kim TM, Cho BC. Oncogenic BRAF fusions in mucosal melanomas activate the MAPK pathway and are sensitive to MEK/PI3K inhibition or MEK/CDK4/6 inhibition. Oncogene. 2017;36(23):3334–45.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    D’Orazio JA. Inherited cancer syndromes in children and young adults. J Pediatr Hematol Oncol. 2010;32(3):195–228.PubMedCrossRefGoogle Scholar
  112. 112.
    Sohier P, Luscan A, Lloyd A, Ashelford K, Laurendeau I, Briand-Suleau A, Vidaud D, Ortonne N, Pasmant E, Upadhyaya M. Confirmation of mutation landscape of NF1-associated malignant peripheral nerve sheath tumors. Genes Chromosomes Cancer. 2017;56(5):421–6.PubMedCrossRefGoogle Scholar
  113. 113.
    Lee W, Teckie S, Wiesner T, et al. PRC2 is recurrently inactivated through EED or SUZ12 loss in malignant peripheral nerve sheath tumors. Nat Genet. 2014;46:1227–32.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Thway K, Fisher C. Malignant peripheral nerve sheath tumor: pathology and genetics. Ann Diagn Pathol. 2014;18(2):109–16.PubMedCrossRefGoogle Scholar
  115. 115.
    Yu J, Deshmukh H, Payton JE, et al. Array-based comparative genomic hybridization identifies CDK4 and FOXM1 alterations as independent predictors of survival in malignant peripheral nerve sheath tumor. Clin Cancer Res. 2011;17:1924–34.PubMedCrossRefGoogle Scholar
  116. 116.
    Hawkins DS, Gupta AA, Rudzinski ER. What is new in the biology and treatment of pediatric rhabdomyosarcoma? Curr Opin Pediatr. 2014;26(1):50–6.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Philpott C, Tovell H, Frayling IM, Cooper DN, Upadhyaya M. The NF1 somatic mutational landscape in sporadic human cancers. Hum Genomics. 2017;11(1):13.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Abramowicz A, Gos M. Neurofibromin in neurofibromatosis type 1—mutations in NF1gene as a cause of disease. Dev Period Med. 2014;18(3):297–306.PubMedPubMedCentralGoogle Scholar
  119. 119.
    Le Guellec S, Soubeyran I, Rochaix P, Filleron T, Neuville A, Hostein I, Coindre JM. CTNNB1 mutation analysis is a useful tool for the diagnosis of desmoid tumors: a study of 260 desmoid tumors and 191 potential morphologic mimics. Mod Pathol. 2012;25(12):1551–8.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Penel N, Chibon F, Salas S. Adult desmoid tumors: biology, management and ongoing trials. Curr Opin Oncol. 2017;29(4):268–74.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Crago AM, Chmielecki J, Rosenberg M, et al. Near universal detection of alterations in CTNNB1 and wnt pathway regulators in desmoid-type fibromatosis by whole-exome sequencing and genomic analysis. Genes Chromosomes Cancer. 2015;54:606–15.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Lasota J, Felisiak-Golabek A, Aly FZ, Wang ZF, Thompson LD. MiettinenM. Nuclear expression and gain-of-function betacatenin mutation in glomangiopericytoma (sinonasal-type hemangiopericytoma): insight into pathogenesis and a diagnostic marker. Mod Pathol. 2015;28(5):715–20.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Haller F, Bieg M, Moskalev EA, et al. Recurrent mutations within the amino-terminal region of beta-catenin are probable key molecular driver events in sinonasal hemangiopericytoma. Am J Pathol. 2015;185:563–71.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Jo VY, Fletcher CDM. Nuclear β-catenin expression is frequent in sinonasal hemangiopericytoma and its mimics. Head Neck Pathol. 2017;11(2):119–23.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Rooper LM, Huang SC, Antonescu CR, et al. Biphenotypic sinonasal sarcoma: an expanded immunoprofile including consistent nuclear beta-catenin positivity and absence of SOX10 expression. Hum Pathol. 2016;55:44–50.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Kakkar A, Rajeshwari M, Sakthivel P, Sharma MC, Sharma SC. Biphenotypic sinonasal sarcoma: a series of six cases with evaluation of role of β-catenin immunohistochemistry in differential diagnosis. Ann Diagn Pathol. 2018;33:6–10.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Briski LM, Thomas DG, Patel RM, Lawlor ER, Chugh R, McHugh JB, Lucas DR. Canonical Wnt/β-catenin signaling activation in soft-tissue sarcomas: a comparative study of synovial sarcoma and leiomyosarcoma. Rare Tumors. 2018;10:2036361318813431.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Eguchi-Ishimae M, Tezuka M, Kokeguchi T, Nagai K, Moritani K, Yonezawa S, Tauchi H, Tokuda K, Ishida Y, Ishii E, Eguchi M. Early detection of the PAX3-FOXO1 fusion gene in circulating tumor-derived DNA in a case of alveolar rhabdomyosarcoma. Genes Chromosomes Cancer. 2019;58(8):521–9.PubMedCrossRefGoogle Scholar
  129. 129.
    Thway K, Ng W, Noujaim J, Jones RL, Fisher C. The current status of solitary fibrous tumor: diagnostic features, variants, and genetics. Int J Surg Pathol. 2016;24(4):281–92.PubMedCrossRefGoogle Scholar
  130. 130.
    Thompson LDR, Fanburg-Smith JC. Update on select benign mesenchymal and meningothelial sinonasal tract lesions. Head Neck Pathol. 2016;10(1):95–108.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Akaike K, Kurisaki-Arakawa A, Hara K, et al. Distinct clinicopathological features of NAB2-STAT6 fusion gene variants in solitary fibrous tumor with emphasis on the acquisition of highly malignant potential. Hum Pathol. 2015;46:347–56.PubMedCrossRefGoogle Scholar
  132. 132.
    Dagrada GP, Spagnuolo RD, Mauro V, et al. Solitary fibrous tumors: loss of chimeric protein expression and genomic instability mark dedifferentiation. Mod Pathol. 2015;28:1074–83.PubMedCrossRefGoogle Scholar
  133. 133.
    Mohajeri A, Tayebwa J, Collin A, et al. Comprehensive genetic analysis identifies a pathognomonic NAB2/STAT6 fusion gene, nonrandom secondary genomic imbalances, and a characteristic gene expression profile in solitary fibrous tumor. Genes Chromosomes Cancer. 2013;52:873–86.PubMedCrossRefGoogle Scholar
  134. 134.
    El Beaino M, Araujo DM, Lazar AJ, Lin PP. Synovial sarcoma: advances in diagnosis and treatment identification of new biologic targets to improve multimodal therapy. Ann Surg Oncol. 2017;24(8):2145–54.PubMedCrossRefGoogle Scholar
  135. 135.
    Clark J, Rocques PJ, Crew AJ, Gill S, Shipley J, Chan AM, Gusterson BA, Cooper CS. Identification of novel genes, SYT and SSX, involved in the t(X;18)(p11.2;q11.2) translocation found in human synovial sarcoma. Nat Genet. 1994;7(4):502–8.PubMedCrossRefGoogle Scholar
  136. 136.
    Nielsen TO, Poulin NM, Ladanyi M. Synovial sarcoma: recent discoveries as a roadmap to new avenues for therapy. Cancer Discov. 2015;5(2):124–34.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Kadoch C, Crabtree GR. Reversible disruption of mSWI/SNF (BAF) complexes by the SS18-SSX oncogenic fusion in synovial sarcoma. Cell. 2013;153:71–85.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Saito T, Oda Y, Sakamoto A, Kawaguchi K, Tanaka K, Matsuda S, Tamiya S, Iwamoto Y, Tsuneyoshi M. APC mutations in synovial sarcoma. J Pathol. 2002;196(4):445–9.PubMedCrossRefGoogle Scholar
  139. 139.
    Subramaniam MM, Calabuig-Fariñas S, Pellin A, Llombart-Bosch A. Mutational analysis of E-cadherin, β-catenin and APC genes in synovial sarcomas. Histopathology. 2010;57(3):482–6.PubMedCrossRefGoogle Scholar
  140. 140.
    Ng TL, Gown AM, Barry TS, Cheang MC, Chan AK, Turbin DA, et al. Nuclear beta-catenin in mesenchymal tumors. Mod Pathol. 2005;18:68–74.PubMedCrossRefGoogle Scholar
  141. 141.
    Barham W, Frump AL, Sherrill TP, Garcia CB, Saito-Diaz K, VanSaun MN, et al. Targeting the Wnt pathway in synovial sarcoma models. Cancer Discov. 2013;3:1286–301.PubMedCrossRefGoogle Scholar
  142. 142.
    Trautmann M, Sievers E, Aretz S, Kindler D, Michels S, Friedrichs N, et al. SS18-SSX fusion protein-induced Wnt/beta-catenin signaling is a therapeutic target in synovial sarcoma. Oncogene. 2013;33:5006–16.PubMedCrossRefGoogle Scholar
  143. 143.
    Le Loarer F, Laffont S, Lesluyes T, Tirode F, Antonescu C, Baglin AC, Delespaul L, Soubeyran I, Hostein I, Pérot G, Chibon F, Baud J, Le Guellec S, Karanian M, Costes-Martineau V, Castain C, Eimer S, Le Bail B, Wassef M, Coindre JM. Clinicopathologic and molecular features of a series of 41 biphenotypic sinonasal sarcomas expanding their molecular spectrum. Am J Surg Pathol. 2019;43(6):747–54.PubMedCrossRefGoogle Scholar
  144. 144.
    Andreasen S, Bishop JA, Hellquist H, Hunt J, Kiss K, Rinaldo A, et al. Biphenotypic sinonasal sarcoma: demographics, clinicopathological characteristics, molecular features, and prognosis of a recently described entity. Virchows Arch. 2018;473(5):615–26.PubMedCrossRefGoogle Scholar
  145. 145.
    Yasuda T, Perry KD, Nelson M, et al. Alveolar rhabdomyosarcoma of the head and neck region in older adults: genetic characterization and a review of the literature. Hum Pathol. 2009;40:341–8.PubMedCrossRefGoogle Scholar
  146. 146.
    Mosquera JM, Sboner A, Zhang L, Kitabayashi N, Chen CL, Sung YS, Wexler LH, LaQuaglia MP, Edelman M, Sreekantaiah C, Rubin MA, Antonescu CR. Recurrent NCOA2 gene rearrangements in congenital/infantile spindle cell rhabdomyosarcoma. Genes Chromosomes Cancer. 2013;52:538–50.PubMedCrossRefGoogle Scholar
  147. 147.
    Reichek JL, Duan F, Smith LM, et al. Genomic and clinical analysis of amplification of the 13q31 chromosomal region in alveolar rhabdomyosarcoma: a report from the Children’s Oncology Group. Clin Cancer Res. 2011;17:1463–73.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Van Gaal JC, Flucke UE, Roeffen MH, et al. Anaplastic lymphoma kinase aberrations in rhabdomyosarcoma: clinical and prognostic implications. J Clin Oncol. 2012;30:308–15.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Mario A. Hermsen
    • 1
    • 2
    • 3
    Email author
  • C. Riobello
    • 1
  • R. García-Marín
    • 1
  • V. N. Cabal
    • 1
  • L. Suárez-Fernández
    • 1
  • F. López
    • 3
  • J. L. Llorente
    • 3
  1. 1.Department of Head and Neck OncologyInstituto de Investigación Sanitaria del Principado de Asturias (ISPA)OviedoSpain
  2. 2.Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Centro de Investigación Biomédica en Red (CIBER-ONC)OviedoSpain
  3. 3.Department of OtolaryngologyHospital Universitario Central de Asturias (HUCA)OviedoSpain

Personalised recommendations