Application of Human-Machine Design Processes to Tensile Structures

  • Klaas De Rycke
  • Louis BergisEmail author
  • Robert Vierlinger
  • Ludovic Regnault
  • Alessio Mazzucchi
  • Sascha Bohnenberger
Conference paper


Tensile structures represent a structural challenge for engineers where design modeling and calculations interact through complex processes. The use of linear processes to design and calculate such complex structures remains slow and inefficient. The aim of this research is to develop an interactive digital design tool that generates various typologies of tensile structures and to propose optimized design solutions adapted to local, semi-local and global objectives.


Interactive evolutionary computation Complex structures Tensile structures Form-finding Dynamic relaxation Intuitive design Non-linearity Biomimetics Machine learning Multi-criteria genetic algorithm 


  1. 1.
    Ahlquist, S., Fleischmann, M.: Elemental method for integrated architectures: experimentation with design processes for cable net structures. Int. J. Archit. Comput. 6, 453–475 (2008)CrossRefGoogle Scholar
  2. 2.
    Grobman, Y.J., Yezioro, A., Capeluto, I.G.: Non-linear architectural design process Int. J. Archit. Comput. 8, 41–53 (2010)Google Scholar
  3. 3.
    Aish, R., Woodbury, R.: Multi-level Interaction in Parametric Design. Lecture Notes in Computer Science (2005)Google Scholar
  4. 4.
    Brazdil, P., Giraud-Carrier, C.: Metalearning and Algorithm Selection: progress, state of the art and introduction to the 2018 Special Issue. Mach. Learn. 170, 1–14 (2018)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Vierlinger, R.: The Alchimy of Simulation, Copenhagen (2016)Google Scholar
  6. 6.
    Risi, S.: A compiler for CPPNs: transforming phenotypic descriptions into genotypic representations (2013)Google Scholar
  7. 7.
    Wilkinson, S., Hanna, S.: Approximating computational fluid dynamics for generative tall building design. Int. J. Archit. Comput. 12, 155–177 (2014)CrossRefGoogle Scholar
  8. 8.
    Vierlinger, R.: Bearable lightness of being. In: Deutsch, R. (ed.) Convergence: The Redesign of Design (AD Smart) (2017)Google Scholar
  9. 9.
    De Rycke, K., Bergis, L., Vierlinger, R., Heimrath, M., Regnault, L., Khan, A.S., Mazzucchi, A., Tascheva, L., Paschke, M., Orlinski, A., Tam, M.: Informed geometry: development of informatically driven design processes for tensile structures. In: Innochain 2018: Expanding Information Modelling for a New Material Age. Dac (2018)Google Scholar
  10. 10.
    Otto, F.: Complete Works, Lightweight Construction Natural Design. Birkhäuser, München (2005)Google Scholar
  11. 11.
    Kullmann, E.: Beobachtungen an der Raumnetzspinne Cyrtophora citricola Forskal auf Sardinien. Deutsche Entomologische Zeitschrift, N.F. 6, Heft I-IIIofficzslack (1959)Google Scholar
  12. 12.
    Zheng, H., Huang, W.: Architectural drawings recognition and generation through machine learning. In: ACADIA (2018)Google Scholar
  13. 13.
    Vierlinger, R.: Multi objective design interface. MSc thesis, University of Applied Arts Vienna, April 2013Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Klaas De Rycke
    • 1
    • 2
  • Louis Bergis
    • 1
    Email author
  • Robert Vierlinger
    • 1
  • Ludovic Regnault
    • 1
  • Alessio Mazzucchi
    • 1
  • Sascha Bohnenberger
    • 1
  1. 1.B+G Ingénierie Bollinger + Grohmann S.a.r.l.ParisFrance
  2. 2.ENSA - VersaillesVersaillesFrance

Personalised recommendations