Topological Interlocking Assemblies Experiment

  • Alice PfeifferEmail author
  • Florian Lesellier
  • Matthieu Tournier
Conference paper


Today’s environment redefines temporality in architecture. New technologies and computational design give engineers and architects keys to rethink building process. We decided to reshape reversible structure by revisiting Topological Interlocking Assemblies for architectural constructions. Starting from a theoretical research, the first part explains the current available knowledge and experiences about Topological Interlocking Assemblies. The second part highlights our experimental work: a full-scale prototype pavilion based into hexagonal pattern developed on a complex shape. Recent topological interlocking references are frozen by non-reversible system edges. This prototype goes beyond and tackles the idea of removable structure using X-joint theory edges modules. They encircle the whole set and absorb structure lateral thrusts. The emphasis is placed on the computational design process, the digital machining procedure and then the assembly phase. To conclude, the paper discusses our findings, reflections and possible follow-ups.


Hexagonal tessellation Discrete elements structures Topological Interlocking Assemblies Experimental border blocks Parametrical and computational design Digital fabrication 


  1. 1.
    Abeille, J.: Voûte plate. Recueil des Machines, pp. 159–164 (1699)Google Scholar
  2. 2.
    Tessmann, O.: Topological interlocking assemblies. Digital Applications in Construction 2, eCAADe 30, pp. 211–219, Prague (2012)Google Scholar
  3. 3.
    Dyskin, A.V., Estrin, Y., Kanel-Belov, A.J., Pasternak, E.: Toughening by fragmentation – how topology helps? Adv. Eng. Mater. 3(11), 885–888 (2001)CrossRefGoogle Scholar
  4. 4.
    Dyskin, A.V., Estrin, Y., Kanel-Belov, A.J., Pasternak, E.: A new principle in design of composite materials: reinforcement by interlocked elements. Compos. Sci. Technol. 63, 483–491 (2003)CrossRefGoogle Scholar
  5. 5.
    Dyskin, A.V., Estrin, Y., Pasternak, E., Khor Han, C., Kanel-Belov, A.J.: Fracture resistant structures based on topological interlocking with non-planar contacts. Adv. Eng. Mater. 5, 116–119 (2003)CrossRefGoogle Scholar
  6. 6.
    Estrin, Y., Dyskin, A.V., Pasternak, E.: Topological as a material design concept. Mater. Sci. Eng. 31, 1189–1194 (2010)CrossRefGoogle Scholar
  7. 7.
    Dyskin, A.V., Estrin, Y., Pasternak, E.: Mortarless Structures Based on Topological Interlocking. Higher Education Press and Springer-Verlag (2012)Google Scholar
  8. 8.
    Fallacara, G.: Digital stereotomy and topological transformations: reasoning about shape building. In: Second International Congress on Construction History, pp. 1075–1090, Cambridge (2006)Google Scholar
  9. 9.
    Glickman, M.: The G-block system of vertically interlocking paving. In: International Conference on Concrete Block Paving, pp. 345–348, Delft (1984)Google Scholar
  10. 10.
    Weizmann, M., Amir, O., Grosman, J.Y.: Topological interlocking in architectural design (2015)Google Scholar
  11. 11.
    Dugué, M.: Expériences et simulations de matériaux autobloquants. Thesis at Université Grenoble Alpes (2013)Google Scholar
  12. 12.
    Molotnikov, A., Estrin, Y., Dyskin, A.V., et al.: Percolation mechanism of failure of a planar assembly of interlocked osteomorphic elements. Eng. Fract. Mech. 76(8), 1222–1232 (2007)CrossRefGoogle Scholar
  13. 13.
    Song, P., et al.: Recursive interlocking puzzles. ACM Trans. Graph. 31(6), 128 (2012)CrossRefGoogle Scholar
  14. 14.
    Xin, S., et al.: Making burr puzzles from 3D models. ACM Trans. Graph. 30(6), 97 (2011)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Alice Pfeiffer
    • 1
    Email author
  • Florian Lesellier
    • 1
  • Matthieu Tournier
    • 1
  1. 1.Ecole d’Architecture de la Ville et des Territoires à Marne-la-ValléeChamps-sur-MarneFrance

Personalised recommendations