• Mária ŽdímalováEmail author
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 88)


In this contribution we discuss tessellation. We analyze basic tessellation, types of tessellation, geometric approach and applications of tessellation in geometry as well as in architecture and art. We study as well as groups of tessellation used in Spanish Alhambra [1, 2, 3]. Finally we open possibilities how to use tessellation for aggregations, aggregations functions and aggregate tessellation.



The author acknowledges the Scientific Slovak Agency APVV-14-0013 and VEGA 1/0006/19.


  1. 1.
  2. 2.
  3. 3.
  4. 4.
    Tchoumathenko K, Zuyev S (2001) Aggregate and fractal tessellations. Probab Theory Relat Field 121:198–218MathSciNetCrossRefGoogle Scholar
  5. 5.
    Zabarina K (2018) Quantitative methods in economics, Tessellation as an alternative aggregation method. 78–91CrossRefGoogle Scholar
  6. 6.
    Grunbau B (2006) What symmetry groups are present in the Alhambra? Notice of the AMS, vol 53, Num 6, pp 670–673Google Scholar
  7. 7.
  8. 8.
    Erika Fecková Škrabuľáková, Elena Grešová (45/2019) Costs Saving via Graph Colouring Approach. Accepted in Scientific Papers of the University of Pardubice, Series DGoogle Scholar
  9. 9.
    Montesinis JM (1987) Classical tessellations and threefolds. Springer, New YorkCrossRefGoogle Scholar
  10. 10.
  11. 11.
    Przybylo J, Schreyer J, Škrabuľáková E (2016) On the facial thue choice number of plane graphs via entropy compression method. Gr Combinat 32(3):1137–1153MathSciNetCrossRefGoogle Scholar
  12. 12.

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Mathematics and Descriptive Geometry, Faculty of Civil EngineeringSlovak University of Technology in BratislavaBratislavaSlovakia

Personalised recommendations