Theranostic Applications of Nanobiotechnology in Cancer

  • Rabia Javed
  • Muhammad Arslan Ahmad
  • Qiang Ao


Cancer is a devastating disease and leading cause of death worldwide. Although many furtherance has been made regarding conventional diagnosis and treatment of cancerous tumors, still many gaps remain to be filled in overcoming this menace. Many benchmarks have been achieved regarding clinical translation with special emphasis on implementation of nanotheranostics in healthcare sector. This has led to mitigation in nanoparticles toxicity and patient’s resistance to drugs. Nanotheranostics has remarkable applications in patient stratification, treatment of cancer stem cells (CSCs) and drug-resistant cancer. Novel strategies including synthesis and engineering of different nanoparticles have been developed that fulfill the purpose of early diagnosis and specified drug delivery to target site. Multifunctional nanoformulations have also been made to perform diagnosis, targeting, and treatment simultaneously. This chapter describes the biology of cancer and concept of nanobiotechnology and nanomedicine for various biomedical applications, having particular emphasis on cancer remedy via nanotheranostics. The advances in nanotheranostics have been discussed in detail and the ways to overcome respective challenges to this technology have been narrated.


Cancer Nanoparticles Targeted drug delivery Nanotheranostics Nano-oncology 


  1. Abbasi E, Aval SF, Akbarzadeh A, Milani M, Nasrabadi HT, Joo SW, Hanifehpour Y, Nejati-Koshki K, Pashaei-Asl R. Dendrimers: synthesis, applications, and properties. Nanoscale Res Lett. 2014;9(1):247.PubMedPubMedCentralCrossRefGoogle Scholar
  2. AbdElhamid AS, Helmy MW, Ebrahim SM, Bahey-El-Din M, Zayed DG, Zein El Dein EA, El-Gizawy SA, Elzoghby AO. Layer-by-layer gelatin/chondroitin quantum dots-based nanotheranostics: combined rapamycin/celecoxib delivery and cancer imaging. Nanomedicine. 2018;13(10).
  3. Abiodun-Solanke IMF, Ajayi DM, Arigbede AO. Nanotechnology and its application in dentistry. Ann Med Health Sci Res. 2014;4(3):S171–7.PubMedPubMedCentralCrossRefGoogle Scholar
  4. AlKahtani RN. The implications and applications of nanotechnology in dentistry. A review. Saudi Dent J. 2018;30(2):107–16.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Anwunobi AP, Emeje MO. Recent applications of natural polymers in nanodrug delivery. J Nanomed Nanotechnol. 2011;S4:002.CrossRefGoogle Scholar
  6. Ayob AZ, Ramasamy TS. Cancer stem cells as key drivers of tumor progression. J Biomed Sci. 2018;25(1):20.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bae YH, Park K. Targeted drug delivery to tumors: myths, reality and possibility. J Control Release. 2011;153(3):198–205.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bharali DJ, Siddiqui IA, Adhami VM, Chamcheu JC, Aldahmash AM, Mukhtar H, Mousa SA. Nanoparticle delivery of natural products in the prevention and treatment of cancers: current status and future prospects. Cancers. 2011;3:4024–45.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Biswas S, Kumari P, Lakhani PM, Ghosh B. Recent advances in polymeric micelles for anti-cancer drug delivery. Eur J Pharm Sci. 2016;83:184–202.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Chandarana M, Curtis A, Hoskins C. The use of nanotechnology in cardiovascular disease. Appl Nanosci. 2018;8(7):1607–19.CrossRefGoogle Scholar
  11. Chen Z, Ma L, Liu Y, Chen C. Applications of functionalized fullerenes in tumor theranostics. Theranostics. 2012;2(3):238–50.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Chen H, Zhang W, Zhu G, Xie J, Chen X. Rethinking cancer nanotheranostics. Nat Rev Mater. 2017;2.
  13. Chowdhury MR, Schumann C, Bhakta-Guha D, Guha G. Cancer nanotheranostics: strategies, promises and impediments. Biomed Pharmacother. 2016;84:291–304.CrossRefGoogle Scholar
  14. Deshpande PP, Biswas S, Torchilin VP. Current trends in the use of liposomes for tumor targeting. Nanomedicine. 2013;8(9):1509–28. Scholar
  15. Fahmy TM, Fong PM, Goyal A, Saltzman WM. Targeted for drug delivery. Mater Today. 2005;8(8):18–26.CrossRefGoogle Scholar
  16. Frank SA. Chapter 12, Stem cells: tissue renewal. In: Dynamics of cancer: incidence, inheritance, and evolution. Princeton, NJ: Princeton University Press; 2007. Scholar
  17. Gardel ML. Synthetic polymers with biological rigidity. Nature. 2013;493:618–9.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Garimella R, Eltorai AEM. Nanotechnology in orthopedics. J Orthop. 2017;22(1):30–3.CrossRefGoogle Scholar
  19. Granada-Ramirez DA, Arias-Ceron JS, Rodriguez-Fragoso P, Vazquez-Hernandez F, Luna-Arias JP, Herrera-Perez JL, Mendoza-Alvarez JG. Quantum dots for biomedical applications. In: Narayan R, editor. Nanobiomaterials. Sawston: Woodhead Publishing; 2018. p. 411–36. Scholar
  20. Hartman KB, Wilson LJ, Rosenblum MG. Detecting and treating cancer with nanotechnology. Mol Diagn Ther. 2008;12(1):1–14.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Hassanpour SH, Dehghani M. Review of cancer from perspective of molecular. J Cancer Res Pract. 2017;4(4):127–9.CrossRefGoogle Scholar
  22. He H, Pham-Huy LA, Dramou P, Xiao D, Zuo P, Pham-Huy C. Carbon nanotubes: applications in pharmacy and medicine. BioMed Res Int. 2013;2013:578290.PubMedPubMedCentralGoogle Scholar
  23. Huang H-K, Yan J, Liu P, Zhao B-Y, Cao Y, Zhang X-F. A novel cancer nanotheranostics system based on quantum dots encapsulated by a polymer-prodrug with controlled release behavior. Aust J Chem. 2017;70(12):1302–11.CrossRefGoogle Scholar
  24. Jiang W, Rutherford D, Vuong T, Liu H. Nanomaterials for treating cardiovascular diseases: a review. Bioact Mater. 2017a;2(4):185–98.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Jiang W, von Roemeling CA, Chen Y, Qie Y, Liu X, Chen J, Kim YS. Designing nanomedicine for immuno-oncology. Nat Biomed Eng. 2017b;1(2).
  26. Kandasamy G, Maity D. Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics. Int J Pharm. 2015;496(2):191–218.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Kievit FM, Zhang M. Cancer nanotheranostics: improving imaging and therapy by targeted delivery across biological barriers. Adv Mater. 2011;20:1–31.Google Scholar
  28. Kuncic Z. Cancer nanomedicine: challenges and opportunities. Med J Aust. 2015;203(5):204–5.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Lappe JM, Travers-Gustafson D, Davies KM, Recker RR, Heaney RP. Vitamin D and calcium supplementation reduces cancer risk: results of a randomized trial. Am J Clin Nutr. 2007;85(6):1586–91.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Liu C, Zhang N. Nanoparticles in gene therapy principles, prospects, and challenges. Prog Mol Biol Transl Sci. 2011;104:509–62.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Luk BT, Zhang L. Current advances in polymer-based nanotheranostics for cancer treatment and diagnosis. ACS Appl Mater Interfaces. 2014;6(24):21859–73.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Mansoori GA, Mohazzabi P, McCormack P, Jabbari S. Nanotechnology in cancer prevention, detection and treatment: bright future lies ahead. World Rev Sci Technol Sustain Develop. 2007;4:226–57.CrossRefGoogle Scholar
  33. Mark Y, Xuchuan J, Liuen L, Jia-Lin Y. Application of nanobiotechnology in cancer: creation of nano-oncology and revolution in cancer research and practice. World J Cancer Res. 2013;1(1):24–36.CrossRefGoogle Scholar
  34. Melancon MP, Stafford RJ, Li C. Challenges to effective cancer nanotheranostics. J Control Release. 2012;164(2):177–82.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Menter DG, Patterson SL, Logsdon CD, Kopetz S, Sood AK, Hawk ET. Convergence of nanotechnology and cancer prevention: are we there yet? Cancer Prev Res. 2014;7(10):973–92. Scholar
  36. Meyenfeldt MV. Cancer-associated malnutrition: an introduction. Eur J Oncol Nurs. 2005;9(2):S35–8.CrossRefGoogle Scholar
  37. Muthu MS, Feng S-S. Theranostic liposomes for cancer diagnosis and treatment: current development and pre-clinical success. Expert Opin Drug Deliv. 2012;10(2):151–5.PubMedCrossRefPubMedCentralGoogle Scholar
  38. Nagamune T. Biomolecular engineering for nanobio/bionanotechnology. Nano Converg. 2017;4(1):9.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Park K, Lee S, Kang E, Kim K, Choi K, Kwon IC. New generation of multifunctional nanoparticles for cancer imaging and therapy. Adv Funct Mater. 2009;19(10):1553–66.CrossRefGoogle Scholar
  40. Patel SP, Patel PB, Parekh BB. Application of nanotechnology in cancer prevention, early detection and treatment. J Cancer Res Therap. 2014;10(3):479–86.Google Scholar
  41. Qasim M, Lim D-J, Park H, Na D. Nanotechnology for diagnosis and treatment of infectious diseases. J Nanosci Nanotechnol. 2014;14(10):7374–87.PubMedCrossRefPubMedCentralGoogle Scholar
  42. Ramzy L, Nasr M, Metwally AA, Awad GAS. Cancer nanotheranostics: a review of the conjugated ligands for overexpressed receptors. Eur J Pharm Sci. 2017;104:273–92.PubMedCrossRefPubMedCentralGoogle Scholar
  43. Riggio C, Pagni E, Raffa V, Cuschieri A. Nano-oncology: clinical application for cancer therapy and future perspectives. J Nanomater. 2011;2011:17.CrossRefGoogle Scholar
  44. Rizzo LY, Theek B, Storm G, Kiessling F, Lammers T. Recent progress in nanomedicine: therapeutic, diagnostic and theranostic applications. Curr Opin Biotechnol. 2013;24(6):1159–66.PubMedCrossRefGoogle Scholar
  45. Satpathy M, Wang L, Zielinski RJ, Qian W, Wang YA, Mohs AM, Kairdolf BA, Ji X, Capala J, Lipowska M, Nie S, Mao H, Yang L. Targeted drug delivery and image-guided therapy of heterogeneous ovarian cancer using Her2-targeted theranostic nanoparticles. Theranostics. 2019;9(3):778–95.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Savaliya R, Shah D, Singh R, Kumar A, Shankar R, Dhawan A, Singh S. Nanotechnology in disease diagnostic techniques. Curr Drug Metab. 2015;16:645–61.PubMedCrossRefPubMedCentralGoogle Scholar
  47. Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer. 2017;17:20–37.PubMedCrossRefPubMedCentralGoogle Scholar
  48. Silva CO, Pinho JO, Lopes JM, Almeida AJ, Gaspar MM, Reis C. Current trends in cancer nanotheranostics: metallic, polymeric, and lipid-based systems. Pharmaceutics. 2019;11(1):1–40.CrossRefGoogle Scholar
  49. Sisay B, Abrha S, Yilma Z, Assen A, Molla F, Tadese E, Wondimu A, Gebre-Samuel N, Pattnaik G. Cancer nanotheranostics: a new paradigm of simultaneous diagnosis and therapy. J Drug Deliv Therap. 2014;4(5):79–86.Google Scholar
  50. Smith WR, Hudson PW, Ponce BA, Manoharan SRR. Nanotechnology in orthopedics: a clinically oriented review. BMC Musculoskelet Disord. 2018;19(1):67.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Sue-Kyung P, Keung-Young Y, Seung-Joon L, Sook-Un K, Se-Hyun A, Dong-Young N, Kuk-Jin C, Paul ST, Ari H, Daehee K. Alcohol consumption, glutathione S-transferase M1 and T1 genetic polymorphisms and breast cancer risk. Pharmacogenetics. 2000;10(4):301–9.CrossRefGoogle Scholar
  52. Tyrrell ZL, Shen Y, Radosz M. Fabrication of micellar nanoparticles for drug delivery through the self-assembly of block copolymers. Prog Polym Sci. 2010;35(9):1128–43.CrossRefGoogle Scholar
  53. Unsoy G, Gunduz U. Smart drug delivery systems in cancer therapy. Curr Drug Targets. 2018;19(3):202–12.PubMedCrossRefPubMedCentralGoogle Scholar
  54. Vasir JK, Labhasetwar V. Targeted drug delivery in cancer therapy. Technol Cancer Res Treat. 2005;4(4):363–74.PubMedCrossRefPubMedCentralGoogle Scholar
  55. Wang L-S, Chuang M-C, Ho JA. Nanotheranostics—a review of recent publications. Int J Nanomed. 2012;7:4679–95.Google Scholar
  56. Wang Y-XJ, Xuan S, Port M, Idee J-M. Recent advances in superparamagnetic iron oxide nanoparticles for cellular imaging and targeted therapy research. Curr Pharm Des. 2013;19(37):6575–93.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Wang X, Chen H, Zeng X, Guo W, Jin Y, Wang S, Tian R, Han Y, Guo L, Han J, Wu Y, Mei L. Efficient lung cancer-targeted drug delivery via a nanoparticle/MSC system. Acta Pharm Sin B. 2019;9(1):167–76. Scholar
  58. Yeh Y-C, Creran B, Rotello V-M. Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale. 2012;4(6):1871–80.PubMedCrossRefPubMedCentralGoogle Scholar
  59. Yu Z, Pestell TG, Lisanti MP, Pestell RG. Cancer stem cells. Int J Biochem Cell Biol. 2012;44(12):2144–51.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Yu X, Trase I, Ren M, Duval K, Guo X, Chen Z. Design of nanoparticle-based carriers for targeted drug delivery. J Nanomater. 2016;3:1–15. Scholar
  61. Zare-Zardini H, Amiri A, Shanbedi M, Taheri-Kafrani A, Sadri Z, Ghanizadeh F, Neamatzadeh H, Sheikhpour R, Boroujeni FK, Dehshiri RM, Hashemi A, Aminorroaya MM, Dehgahnzadeh MR, Shahriari SH. Nanotechnology and pediatric cancer: prevention, diagnosis and treatment. Iranian J Pediat Hematol Oncol. 2015;5(4):233–48.Google Scholar
  62. Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC. Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther. 2008;83(5):761–9.PubMedCrossRefPubMedCentralGoogle Scholar
  63. Zhang X-F, Liu Z-G, Shen W, Gurunathan S. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci. 2016;17(9):1534.PubMedCentralCrossRefGoogle Scholar
  64. Zhao Y, Houston ZH, Simpson JD, Chen L, Fletcher NL, Fuchs AV, Blakey I, Thurecht KJ. Using peptide aptamer targeted polymers as a model nanomedicine for investigating drug distribution in cancer nanotheranostics. Mol Pharm. 2017;14(10):3539–49.PubMedCrossRefPubMedCentralGoogle Scholar
  65. Zou P, Yu Y, Wang YA, Zhong Y, Welton A, Galban C, Wang S, Sun D. Superparamagnetic iron oxide nanotheranostics for targeted cancer cell imaging and pH-dependent intracellular drug release. Mol Pharm. 2010;7(6):1974–84.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rabia Javed
    • 1
  • Muhammad Arslan Ahmad
    • 1
    • 2
  • Qiang Ao
    • 1
  1. 1.Department of Tissue EngineeringChina Medical UniversityShenyangChina
  2. 2.Key Lab of Eco-restoration of Regional Contaminated EnvironmentShenyang University, Ministry of EducationShenyangChina

Personalised recommendations