Superparamagnetic Iron Oxide Nanoparticles for Cancer Theranostic Applications

  • Dipak Maity
  • Ganeshlenin Kandasamy
  • Atul Sudame


In the last few decades, superparamagnetic iron oxide nanoparticles (SPIONs—particularly magnetite (Fe3O4)/maghemite (Fe2O3) nanoparticles) have gained a great deal of attention in many biomedical applications, including magnetic targeting based cell isolation/sorting, tissue engineering, gene delivery, and magnetofection, due to their unique magnetic properties, excellent chemical stability, biodegradability, and low toxicity as compared to other magnetic materials (for instance, Co, Mn, and Ni). But recently, SPIONs (in the form of ferrofluids—i.e., SPIONs dispersed in a carrier fluid) have become a highly promising candidate for their use as therapeutic and diagnostic (theranostic) agents in cancer treatment applications such as magnetic fluid hyperthermia (MFH) and magnetic resonance imaging (MRI), respectively. However, the theranostic efficacies of the SPIONs (or ferrofluids) might alter due to the differences in their physicochemical/dispersibility/magnetic properties that are significantly impacted by their synthesis methods and their stabilization process. In this chapter, we have initially discussed the crystal structure/composition and different synthesis methods of the SPIONs. Then, we have described the role of the SPIONs in the formation of the ferrofluids along with their stabilization process via diverse interactions. Finally, we have discussed about their (1) intrinsic cancer theranostic applications of SPIONs such as magnetic fluid hyperthermia, magnetic resonance imaging, and magnetic nanoparticle-based drug delivery and (2) combined cancer theranostics applications including MRI as an adjuvant to fluorescence imaging, thermo-chemotherapy, thermo-radiotherapy, and thermo-immunotherapy.


SPIONs Magnetic nanoparticles Biomedical applications Nanomedicine Magnetic fluid hyperthermia Magnetic resonance imaging Ferrofluids Theranostics Cancer treatment 


  1. Abadeer NS, Murphy CJ. Recent progress in cancer thermal therapy using gold nanoparticles. J Phys Chem C. 2016;120(9):4691–716.CrossRefGoogle Scholar
  2. Ahn T, Kim JH, Yang HM, Lee JW, Kim JD. Formation pathways of magnetite nanoparticles by coprecipitation method. J Phys Chem C. 2012;116(10):6069–76.CrossRefGoogle Scholar
  3. Aires A, Ocampo SM, Simões BM, Josefa Rodríguez M, Cadenas JF, Couleaud P, Cortajarena AL. Multifunctionalized iron oxide nanoparticles for selective drug delivery to CD44-positive cancer cells. Nanotechnology. 2016;27(6):065103.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Ali A, Zafar H, Zia M, ul Haq I, Phull AR, Ali JS, Hussain A. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol Sci Appl. 2016;9:49–67.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Ali LMA, Marzola P, Nicolato E, Fiorini S, De M. Polymer-coated superparamagnetic iron oxide nanoparticles as T2 contrast agent for MRI and their uptake in liver. Future Sci OA. 2017;5:FSO235.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Ansari MO, Ahmad MF, Shadab GGHA, Siddique HR. Superparamagnetic iron oxide nanoparticles based cancer theranostics: a double edge sword to fight against cancer. J Drug Deliv Sci Technol. 2018;45:177–83.CrossRefGoogle Scholar
  7. Araki EH, Ehlers J, Hepp K, Tvergaard JSV, Potier-ferry M. Colloidal magnetic fluids: basics, development and application of ferrofluid, Lecture notes in physics. Berlin: Springer Science & Business Media; 2009.Google Scholar
  8. Arriortua OK, Garaio E, de la Parte BH, Insausti M, Lezama L, Plazaola F, et al. Antitumor magnetic hyperthermia induced by RGD-functionalized Fe3O4 nanoparticles, in an experimental model of colorectal liver metastases. Beilstein J Nanotechnol. 2016;7(1):1532–42.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Baskar R, Dai J, Wenlong N, Yeo R, Yeoh K-W. Biological response of cancer cells to radiation treatment. Front Mol Biosci. 2014;1:1–9.CrossRefGoogle Scholar
  10. Bastow TJ, Trinchi A. NMR analysis of ferromagnets: Fe oxides. Solid State Nucl Magn Reson. 2009;35(1):25–31.PubMedCrossRefGoogle Scholar
  11. Bedanta S, Kleemann W. Supermagnetism. J Phys D Appl Phys. 2009;42(1):013001.CrossRefGoogle Scholar
  12. Boutonnet M, Lögdberg S, Elm Svensson E. Recent developments in the application of nanoparticles prepared from w/o microemulsions in heterogeneous catalysis. Curr Opin Colloid Interface Sci. 2008;13(4):270–86.CrossRefGoogle Scholar
  13. Burgess A, Shah K, Hough O, Hynynen K. Next generation superparamagnetic iron oxide nanoparticles for cancer theranostics. Drug Discov Today. 2016;15(5):477–91.Google Scholar
  14. Chopra M, Kandasamy G, Maity D. Multifunctional magnetic nanoparticles—a promising approach for cancer treatment. J Nanomed Res. 2016;4(1):3–4.Google Scholar
  15. Cornell RM, Schwertmann U. Introduction to iron oxides. In: The iron oxides: structure, properties, reactions, occurences and uses. Weinheim: Wiley; 2004. p. 1–7. ISBN: 9783527302741 (Print); 9783527602094 (Online).CrossRefGoogle Scholar
  16. Corot C, Warlin D. Superparamagnetic iron oxide nanoparticles for MRI: contrast media pharmaceutical company R&D perspective. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2013;5(5):411–22.PubMedCrossRefGoogle Scholar
  17. Danhier F, Feron O, Préat V. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release. 2010;148(2):135–46.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Datta NR, Ordóñez SG, Gaipl US, Paulides MM, Crezee H, Gellermann J, et al. Local hyperthermia combined with radiotherapy and-/or chemotherapy: recent advances and promises for the future. Cancer Treat Rev. 2015;41(9):742–53.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Demirer GS, Okur AC, Kizilel S. Synthesis and design of biologically inspired biocompatible iron oxide nanoparticles for biomedical applications. J Mater Chem B. 2015;3(40):7831–49.CrossRefGoogle Scholar
  20. Desouky O, Ding N, Zhou G. Targeted and non-targeted effects of ionizing radiation. J Radiat Res Appl Sci. 2015;8(2):247–54.CrossRefGoogle Scholar
  21. Efremova MV, Naumenko VA, Spasova M, Garanina AS, Abakumov MA, Blokhina AD, et al. Magnetite-gold nanohybrids as ideal all-in-one platforms for theranostics. Sci Rep. 2018;8(1):1–19.CrossRefGoogle Scholar
  22. Evans ER, Bugga P, Asthana V, Drezek R. Metallic nanoparticles for cancer immunotherapy. Mater Today. 2018;21(6):673–85.CrossRefGoogle Scholar
  23. Farkona S, Diamandis EP, Blasutig IM. Cancer immunotherapy: the beginning of the end of cancer? BMC Med. 2016;14(1):1–18.CrossRefGoogle Scholar
  24. Fass L. Imaging and cancer: a review. Mol Oncol. 2008;2:115–52.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Ferreira RV, Martins TM, Goes AM, Fabris JD, Cavalcante LCD, Outon LEF, Domingues RZ. Thermosensitive gemcitabine-magnetoliposomes for combined hyperthermia and chemotherapy. Nanotechnology. 2016;27(8):085105.PubMedCrossRefGoogle Scholar
  26. Fu C, Ravindra NM. Magnetic iron oxide nanoparticles: synthesis and applications. Bioinspir Biomim Nanobiomater. 2012;1(4):229–44.CrossRefGoogle Scholar
  27. Ganipineni LP, Ucakar B, Joudiou N, Bianco J, Danhier P, Zhao M, et al. Magnetic targeting of paclitaxel-loaded poly(lactic-co-glycolic acid)-based nanoparticles for the treatment of glioblastoma. Int J Nanomed. 2018;13:4509–21.CrossRefGoogle Scholar
  28. Gilchrist RK, Medal R, Shorey WD, Hanselman RC, Parrott JC, Taylor CB. Selective inductive heating of lymph nodes. Ann Surg. 1957;146(4):596–606.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Gkanas EI. In vitro magnetic hyperthermia response of iron oxide MNP’s incorporated in DA3, MCF-7 and HeLa cancer cell lines. Cent Eur J Chem. 2013;11(7):1042–54.Google Scholar
  30. Grifantini R, Taranta M, Gherardini L, Naldi I, Parri M, Grandi A, Cinti C. Magnetically driven drug delivery systems improving targeted immunotherapy for colon-rectal cancer. J Control Release. 2018;280:76–86.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Grover VPB, Tognarelli JM, Crossey MME, Cox IJ, Taylor-Robinson SD, McPhail MJW. Magnetic resonance imaging: principles and techniques: lessons for clinicians. J Clin Exp Hepatol. 2015;5(3):246–55.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Gupta KM, Gupta N. Advanced electrical and electronics materials: processes and applications. Hoboken, NJ: Wiley; 2015.CrossRefGoogle Scholar
  33. Hairston RJ. The management of cytomegalovirus-associated retinal detachments. J Int Assoc Phys AIDS Care. 1996;2(5):31–4.Google Scholar
  34. Hayashi K, Sato Y, Sakamoto W, Yogo T. Theranostic nanoparticles for MRI-guided thermochemotherapy: “tight” clustering of magnetic nanoparticles boosts relaxivity and heat-generation power. ACS Biomater Sci Eng. 2017;3(1):95–105.CrossRefGoogle Scholar
  35. Hervault A, Thanh NTK. Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer. Nanoscale. 2014;6(20):11553–73.PubMedCrossRefPubMedCentralGoogle Scholar
  36. Ibarra J, Encinas D, Blanco M, Barbosa S, Taboada P, Juárez J, Valdez MA. Co-encapsulation of magnetic nanoparticles and cisplatin within biocompatible polymers as multifunctional nanoplatforms: synthesis, characterization, and in vitro assays. Mater Res Express. 2018;5(1):015023.CrossRefGoogle Scholar
  37. Issa B, Obaidat IM, Albiss BA, Haik Y. Magnetic nanoparticles: surface effects and properties related to biomedicine applications. Int J Mol Sci. 2013;14(11):21266–305.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Ito A, Ito Y, Matsushima S, Tsuchida D, Ogasawara M, Hasegawa J, et al. New whole-body multimodality imaging of gastric cancer peritoneal metastasis combining fluorescence imaging with ICG-labeled antibody and MRI in mice. Gastric Cancer. 2014;17(3):497–507.PubMedCrossRefPubMedCentralGoogle Scholar
  39. Jacques V, Dumas S, Sun W-C, Troughton J, Greenfield MT, Caravan P. High relaxivity MRI contrast agents part 2: optimization of inner- and second-sphere relaxivity. Investig Radiol. 2010;45(10):613–24.CrossRefGoogle Scholar
  40. Jena BP. Atomic force microscope: providing new insights on the structure and function of living cells. Cell Biol Int. 1997;21(11):683–4.PubMedCrossRefPubMedCentralGoogle Scholar
  41. Jiang PS, Tsai HY, Drake P, Wang FN, Chiang CS. Gadolinium-doped iron oxide nanoparticles induced magnetic field hyperthermia combined with radiotherapy increases tumour response by vascular disruption and improved oxygenation. Int J Hyperth. 2017;33:1–9.CrossRefGoogle Scholar
  42. Jo SD, Ku SH, Won YY, Kim SH, Kwon IC. Targeted nanotheranostics for future personalized medicine: recent progress in cancer therapy. Theranostics. 2016;6:1362–77.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Josephson L, Kircher MF, Mahmood U, Tang Y, Weissleder R. Near-infrared fluorescent nanoparticles as combined MR/optical imaging probes. Bioconjug Chem. 2002;13(3):554–60.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Kalikmanov VI. Ferrofluids. In: Statistical physics of fluids Texts and Monographs in Physics. Springer, Berlin, Heidelberg 2001. pp. 223–238.CrossRefGoogle Scholar
  45. Kandasamy G, Maity D. Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics. Int J Pharm. 2015;496(2):191–218.PubMedCrossRefPubMedCentralGoogle Scholar
  46. Kandasamy G, Sudame A, Bhati P, Chakrabarty A, Maity D. Systematic investigations on heating effects of carboxyl-amine functionalized superparamagnetic iron oxide nanoparticles (SPIONs) based ferrofluids for in vitro cancer hyperthermia therapy. J Mol Liq. 2018a;256:224–37.CrossRefGoogle Scholar
  47. Kandasamy G, Sudame A, Luthra T, Saini K, Maity D. Functionalized hydrophilic superparamagnetic iron oxide nanoparticles for magnetic fluid hyperthermia application in liver cancer treatment. ACS Omega. 2018b;3(4):3991–4005.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Kandasamy G, Khan S, Giri J, Bose S, Veerapu NS, Maity D. One-pot synthesis of hydrophilic flower-shaped iron oxide nanoclusters (IONCs) based ferrofluids for magnetic fluid hyperthermia applications. J Mol Liq. 2019a;275:699–712.CrossRefGoogle Scholar
  49. Kandasamy G, Soni S, Sushmita K, Veerapu NS, Bose S, Maity D. One-step synthesis of hydrophilic functionalized and cytocompatible superparamagnetic iron oxide nanoparticles (SPIONs) based aqueous ferrofluids for biomedical applications. J Mol Liq. 2019b;274:653–63.CrossRefGoogle Scholar
  50. Kaur P, Hurwitz MD, Krishnan S, Asea A. Combined hyperthermia and radiotherapy for the treatment of cancer. Cancers. 2011;3(4):3799–823.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Kim DH, Vitol EA, Liu J, Balasubramanian S, Gosztola DJ, Cohen EE, et al. Stimuli-responsive magnetic nanomicelles as multifunctional heat and cargo delivery vehicles. Langmuir. 2013;29(24):7425–32.PubMedCrossRefPubMedCentralGoogle Scholar
  52. Kitture R, Ghosh S, Kulkarni P, Liu XL, Maity D, Patil SI, et al. Fe3O4-citrate-curcumin: promising conjugates for superoxide scavenging, tumor suppression and cancer hyperthermia. J Appl Phys. 2012;111(6):064702.CrossRefGoogle Scholar
  53. Kohrt H, Rajasekaran N, Chester C, Yonezawa A, Zhao X. Enhancement of antibody-dependent cell mediated cytotoxicity: a new era in cancer treatment. Immunotargets Ther. 2015;4:91.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Kokura S, Yoshikawa T, Ohnishi T. Hyperthermic oncology from bench to bedside. Singapore: Springer; 2016.CrossRefGoogle Scholar
  55. Kosaka N, Ogawa M, Choyke PPL, Kobayashi H. Clinical implications of near-infrared fluorescence imaging in cancer. Future Oncol. 2009;5(9):1501–11.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Kozissnik B, Bohorquez AC, Dobson J, Rinaldi C. Magnetic fluid hyperthermia: advances, challenges, and opportunity. Int J Hyperth. 2013;29(8):706–14.CrossRefGoogle Scholar
  57. Kudr J, Haddad Y, Richtera L, Heger Z, Cernak M, Adam V, Zitka O. Magnetic nanoparticles: from design and synthesis to real world applications. Nanomaterials. 2017;7(9):243.PubMedCentralCrossRefGoogle Scholar
  58. Kumar CSSR, Leuschner C. Nanoparticles for cancer drug delivery. In: Nanofabrication towards biomedical applications: techniques, tools, applications, and impact. Weinheim: Wiley-VCH; 2005.CrossRefGoogle Scholar
  59. Lahiri BB, Muthukumaran T, Philip J. Magnetic hyperthermia in phosphate coated iron oxide nanofluids. J Magn Magn Mater. 2016;407:101–13.CrossRefGoogle Scholar
  60. Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations and biological applications. Chem Rev. 2008;108(6):2064–110.PubMedCrossRefPubMedCentralGoogle Scholar
  61. Laurent S, Dutz S, Häfeli UO, Mahmoudi M. Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv Colloid Interf Sci. 2011;166(1–2):8–23.CrossRefGoogle Scholar
  62. Laurent S, Saei AA, Behzadi S, Panahifar A, Mahmoudi M. Superparamagnetic iron oxide nanoparticles for delivery of therapeutic agents: opportunities and challenges. Expert Opin Drug Deliv. 2014;11(9):1449–70.PubMedCrossRefPubMedCentralGoogle Scholar
  63. Li W, Hinton CH, Lee SS, Wu J, Fortner JD. Surface engineering superparamagnetic nanoparticles for aqueous applications: design and characterization of tailored organic bilayers. Environ Sci Nano. 2015;3:1–20.Google Scholar
  64. Li X, Wei J, Aifantis KE, Fan Y, Feng Q, Cui FZ, Watari F. Current investigations into magnetic nanoparticles for biomedical applications. J Biomed Mater Res A. 2016;104:1285–96.PubMedCrossRefPubMedCentralGoogle Scholar
  65. Li Q, Kartikowati CW, Horie S, Ogi T, Iwaki T, Okuyama K. Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe3O4 nanoparticles. Sci Rep. 2017;7(1):1–4.CrossRefGoogle Scholar
  66. Li M, Bu W, Ren J, Li J, Deng L, Gao M, et al. Enhanced synergism of thermo-chemotherapy for liver cancer with magnetothermally responsive nanocarriers. Theranostics. 2018;8(3):693–709.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Liao MY, Wu CH, Lai PS, Yu J, Lin HP, Liu TM, Huang CC. Surface state mediated NIR two-photon fluorescence of iron oxides for nonlinear optical microscopy. Adv Funct Mater. 2013;23:2044–51.CrossRefGoogle Scholar
  68. Lin BL, Zhang JZ, Lu LJ, Mao JJ, Cao MH, Mao XH, Shen J. Superparamagnetic iron oxide nanoparticles-complexed cationic amylose for in vivo magnetic resonance imaging tracking of transplanted stem cells in stroke. Nanomaterials. 2017;7(5):107.PubMedCentralCrossRefGoogle Scholar
  69. Lin FC, Hsu CH, Lin YY. Nano-therapeutic cancer immunotherapy using hyperthermia-induced heat shock proteins: insights from mathematical modeling. Int J Nanomed. 2018;13:3529–39.CrossRefGoogle Scholar
  70. Liu S, Jia B, Qiao R, Yang Z, Yu Z, Liu Z, et al. A novel type of dual-modality molecular probe for MR and nuclear imaging of tumor: preparation, characterization and in vivo application. Mol Pharm. 2009;6(4):1074–82.PubMedCrossRefPubMedCentralGoogle Scholar
  71. Liu H, Tan Y, Xie L, Yang L, Zhao J, Bai J, et al. Self-assembled dual-modality contrast agents for non-invasive stem cell tracking via near-infrared fluorescence and magnetic resonance imaging. J Colloid Interface Sci. 2016;478:217–26.PubMedCrossRefPubMedCentralGoogle Scholar
  72. Mahmoudi M, Sant S, Wang B, Laurent S, Sen T. Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev. 2011;63(1–2):24–46.PubMedCrossRefPubMedCentralGoogle Scholar
  73. Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B, et al. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol. 2011;103(2):317–24.PubMedCrossRefPubMedCentralGoogle Scholar
  74. Maity D, Agrawal DC. Synthesis of iron oxide nanoparticles under oxidizing environment and their stabilization in aqueous and non-aqueous media. J Magn Magn Mater. 2007;308(1):46–55.CrossRefGoogle Scholar
  75. Maity D, Ding J, Xue JM. Synthesis of magnetite nanoparticles by thermal decomposition: time, temperature, surfactant and solvent effects. Funct Mater Lett. 2008;01(3):189–93.CrossRefGoogle Scholar
  76. Maity D, Ding J, Xue JM. One-pot synthesis of hydrophilic and hydrophobic ferrofluid. Int J Nanosci. 2009;8(1–2):65–9.CrossRefGoogle Scholar
  77. Maity D, Chandrasekharan P, Si-Shen F, Xue JM, Ding J. Polyol-based synthesis of hydrophilic magnetite nanoparticles. J Appl Phys. 2010a;107(9):09B310.CrossRefGoogle Scholar
  78. Maity D, Chandrasekharan P, Yang CT, Chuang KH, Shuter B, Xue JM, Feng SS. Facile synthesis of water-stable magnetite nanoparticles for clinical MRI and magnetic hyperthermia applications. Nanomedicine. 2010b;5(10):1571–84.PubMedCrossRefPubMedCentralGoogle Scholar
  79. Maity D, Chandrasekharan P, Pradhan P, Chuang K-H, Xue J-M, Feng S-S, Ding J. Novel synthesis of superparamagnetic magnetite nanoclusters for biomedical applications. J Mater Chem. 2011a;21(38):14717.CrossRefGoogle Scholar
  80. Maity D, Pradhan P, Chandrasekharan P, Kale SN, Shuter B, Bahadur D, Ding J. Synthesis of hydrophilic superparamagnetic magnetite nanoparticles via thermal decomposition of Fe(acac)3 in 80 Vol% TREG + 20 Vol% TREM. J Nanosci Nanotechnol. 2011b;11(3):2730–4.CrossRefGoogle Scholar
  81. Maxwell DJ, Bonde J, Hess DA, Hohm SA, Lahey R, Zhou P, et al. Fluorophore-conjugated iron oxide nanoparticle labeling and analysis of engrafting human hematopoietic stem cells. Stem Cells. 2008;26(2):517–24.PubMedCrossRefPubMedCentralGoogle Scholar
  82. McCarthy MJ. Introduction to magnetic resonance imaging (MRI). In: Magnetic resonance imaging in foods; 2011. pp. 1–29.CrossRefGoogle Scholar
  83. Mclaughlin R, Hylton N, Imaging B. MRI in breast cancer therapy monitoring. NMR Biomed. 2015;24(6):712–20.Google Scholar
  84. Merbach A, Helm L, Tóth É. The chemistry of contrast agents in medical magnetic resonance imaging. 2nd ed. Oxford: Wiley-Blackwell; 2013.CrossRefGoogle Scholar
  85. Mishra SK, Kumar BSH, Khushu S, Tripathi RP, Gangenahalli G. Increased transverse relaxivity in ultrasmall superparamagnetic iron oxide nanoparticles used as MRI contrast agent for biomedical imaging. Contrast Media Mol Imaging. 2016;11(5):350–61.PubMedCrossRefPubMedCentralGoogle Scholar
  86. Mojica Pisciotti ML, Lima E, Vasquez Mansilla M, Tognoli VE, Troiani HE, Pasa AA, Zysler RD. In vitro and in vivo experiments with iron oxide nanoparticles functionalized with dextran or polyethylene glycol for medical applications: magnetic targeting. J Biomed Mater Res B Appl Biomater. 2014;102(4):860–8.PubMedCrossRefPubMedCentralGoogle Scholar
  87. Morel A, Nikitenko SI, Gionnet K, Wattiaux A, Lai-kee-him J, Labrugere C, Faculte A. Sonochemical approach to the synthesis of Fe3O4@SiO2 core–shell nanoparticles with tunable properties. ACS Nano. 2008;2(5):847–56.PubMedCrossRefPubMedCentralGoogle Scholar
  88. Moskowitz BM. Hitchhiker’s guide to magnetism. Environmental magnetism workshop, vol. 279(1), 1991. p. 48.Google Scholar
  89. Mutin PH, Vioux A. Nonhydrolytic processing of oxide-based materials: simple routes to control homogeneity, morphology, and nanostructure. Chem Mater. 2009;21(4):582–96.CrossRefGoogle Scholar
  90. Nitz WR, Reimer P. Contrast mechanisms in MR imaging. Eur Radiol. 1999;9(6):1032–46.PubMedCrossRefPubMedCentralGoogle Scholar
  91. Odenbach S. Ferrofluids—magnetically controllable fluids and their applications. Berlin: Springer; 2002.CrossRefGoogle Scholar
  92. Odenbach S. Ferrofluids—magnetically controlled suspensions. Colloids Surf A Physicochem Eng Asp. 2003;217(1–3):171–8.CrossRefGoogle Scholar
  93. Ohno T, Wakabayashi T, Takemura A, Yoshida J, Ito A, Shinkai M, Kobayashi T. Effective solitary hyperthermia treatment of malignant glioma using stick type CMC-magnetite. In vivo study. J Neurooncol. 2002;56(3):233–9.PubMedCrossRefPubMedCentralGoogle Scholar
  94. Okoli C, Boutonnet M, Mariey L, Jaras S, Rajarao G. Application of magnetic iron oxide nanoparticles prepared from microemulsions for protein purification. J Chem Technol Biotechnol. 2011;86(11):1386–93.CrossRefGoogle Scholar
  95. Ortega RA, Giorgio TD. A mathematical model of superparamagnetic iron oxide nanoparticle magnetic behavior to guide the design of novel nanomaterials. J Nanopart Res. 2012;14(12):1282.CrossRefGoogle Scholar
  96. Park W, Heo Y-J, Han DK. New opportunities for nanoparticles in cancer immunotherapy. Biomater Res. 2018;22(1):24.PubMedPubMedCentralCrossRefGoogle Scholar
  97. Piñeiro Y, Vargas Z, Rivas J, Lõpez-Quintela MA. Iron oxide based nanoparticles for magnetic hyperthermia strategies in biological applications. Eur J Inorg Chem. 2015;2015(27):4495–509.CrossRefGoogle Scholar
  98. Pinkas J, Reichlova V, Zboril R, Moravec Z, Bezdicka P, Matejkova J. Sonochemical synthesis of amorphous nanoscopic iron(III) oxide from Fe(acac)3. Ultrason Sonochem. 2008;15(3):257–64.PubMedCrossRefGoogle Scholar
  99. Polyak B, Friedman G. Magnetic targeting for site-specific drug delivery: applications and clinical potential. Expert Opin Drug Deliv. 2009;6(1):53–70.PubMedCrossRefGoogle Scholar
  100. Pooley R. Fundamental Physics of MR Imaging. Radiographics. 2005;25(4):1087–99.PubMedCrossRefGoogle Scholar
  101. Prashant C, Dipak M, Yang CT, Chuang KH, Jun D, Feng SS. Superparamagnetic iron oxide—loaded poly (lactic acid)-d-alpha-tocopherol polyethylene glycol 1000 succinate copolymer nanoparticles as MRI contrast agent. Biomaterials. 2010;31(21):5588–97.PubMedCrossRefGoogle Scholar
  102. Prijic S, Sersa G. Magnetic nanoparticles as targeted delivery systems in oncology. Radiol Oncol. 2011;45(1):1–16.PubMedPubMedCentralCrossRefGoogle Scholar
  103. Qiao R, Yang C, Gao M. Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications. J Mater Chem. 2009;19(35):6274.CrossRefGoogle Scholar
  104. Rabias I, Tsitrouli D, Karakosta E, Kehagias T, Diamantopoulos G, Fardis M, Papavassiliou G. Rapid magnetic heating treatment by highly charged maghemite nanoparticles on Wistar rats exocranial glioma tumors at microliter volume. Biomicrofluidics. 2010;4(2):024111.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Raj K, Boulton RJ. Ferrofluids—properties and applications. Mater Des. 1987;8(4):233–6.CrossRefGoogle Scholar
  106. Raj K, Moskowitz B, Casciari R. Advances in ferrofluid technology. J Magn Magn Mater. 1995;149(1–2):174–80.CrossRefGoogle Scholar
  107. Rao W, Deng ZS, Liu J. A review of hyperthermia combined with radiotherapy/chemotherapy on malignant tumors. Crit Rev Biomed Eng. 2010;38(1):101–16.PubMedCrossRefGoogle Scholar
  108. Revia RA, Zhang M. Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: recent advances. Mater Today. 2016;19(3):157–68.CrossRefGoogle Scholar
  109. Rosenblum D, Joshi N, Tao W, Karp JM, Peer D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat Commun. 2018;9(1):1410.PubMedPubMedCentralCrossRefGoogle Scholar
  110. Rosensweig RE. Ferrohydrodynamics. Mineola: Dover Publications; 1997.Google Scholar
  111. Scherer C, Neto AMF. Ferrofluids: properties and applications. Braz J Phys. 2005;35(3):718–27.CrossRefGoogle Scholar
  112. Schleich N, Po C, Jacobs D, Ucakar B, Gallez B, Danhier F, Préat V. Comparison of active, passive and magnetic targeting to tumors of multifunctional paclitaxel/SPIO-loaded nanoparticles for tumor imaging and therapy. J Control Release. 2014;194:82–91.PubMedCrossRefPubMedCentralGoogle Scholar
  113. Shen B, Ma Y, Yu S, Ji C. Smart multifunctional magnetic nanoparticle-based drug delivery system for cancer thermo-chemotherapy and intracellular imaging. ACS Appl Mater Interfaces. 2016;8(37):24502–8.PubMedCrossRefPubMedCentralGoogle Scholar
  114. Shen Z, Wu A, Chen X. Iron oxide nanoparticle based contrast agents for magnetic resonance imaging. Mol Pharm. 2017;14(5):1352–64.PubMedCrossRefPubMedCentralGoogle Scholar
  115. Shin TH, Choi Y, Kim S, Cheon J. Recent advances in magnetic nanoparticle-based multi-modal imaging. Chem Soc Rev. 2015;44(14):4501–16.PubMedCrossRefPubMedCentralGoogle Scholar
  116. Silva AC, Oliveira TR, Mamani JB, Malheiros SMF, Malavolta L, Pavon LF, Gamarra LF. Application of hyperthermia induced by superparamagnetic iron oxide nanoparticles in glioma treatment. Int J Nanomed. 2011;6:591–603.Google Scholar
  117. Spaldin N. Magnetic materials-fundamentals and applications. Cambridge: Cambridge University Press; 2003.Google Scholar
  118. Stephen ZR, Kievit FM, Zhang M. Magnetite nanoparticles for medical MR imaging. Mater Today. 2012;14(11):330–8.Google Scholar
  119. Suto M, Hirota Y, Mamiya H, Fujita A, Kasuya R, Tohji K, Jeyadevan B. Heat dissipation mechanism of magnetite nanoparticles in magnetic fluid hyperthermia. J Magn Magn Mater. 2009;321(10):1493–6.CrossRefGoogle Scholar
  120. Tan YF, Chandrasekharan P, Maity D, Yong CX, Chuang KH, Zhao Y, Feng SS. Multimodal tumor imaging by iron oxides and quantum dots formulated in poly (lactic acid)-d-alpha-tocopheryl polyethylene glycol 1000 succinate nanoparticles. Biomaterials. 2011;32(11):2969–78.PubMedCrossRefPubMedCentralGoogle Scholar
  121. Tartaj P, Del M, Morales P, Veintemillas-Verdaguer S, González-Carr T, Serna CJ. The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys. 2003;36(36):182–97.CrossRefGoogle Scholar
  122. Thanh NTK. Magnetic nanoparticles: from fabrication to clinical applications. Boca Raton, FL: CRC Press; 2012.CrossRefGoogle Scholar
  123. Thanh NTK. Clinical applications of magnetic nanoparticles, vol. 91. Boca Raton, FL: CRC Press; 2018.CrossRefGoogle Scholar
  124. Thomsen LB, Thomsen MS, Moos T. Targeted drug delivery to the brain using magnetic nanoparticles. Ther Deliv. 2015;6(10):1145–55.PubMedCrossRefPubMedCentralGoogle Scholar
  125. Toraya-Brown S, Fiering S. Local tumour hyperthermia as immunotherapy for metastatic cancer. Int J Hyperth. 2014;30(8):531–9.CrossRefGoogle Scholar
  126. Trohidou K, editor. Magnetic nanoparticle assemblies. Singapore: Pan Stanford Publishing; 2014.Google Scholar
  127. Turcheniuk K, Tarasevych AV, Kukhar VP, Boukherroub R, Szunerits S. Recent advances in surface chemistry strategies for the fabrication of functional iron oxide based magnetic nanoparticles. Nanoscale. 2013;5(22):10729.PubMedCrossRefPubMedCentralGoogle Scholar
  128. Veiseh O, Gunn J, Zhang M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev. 2011;62(3):284–304.CrossRefGoogle Scholar
  129. Wang W. NK cell-mediated antibody-dependent cellular cytotoxicity in cancer immunotherapy. Front Immunol. 2015;6(11):683–4.Google Scholar
  130. Wang YJ, Xuan S, Port M, Idee J. Recent advances in superparamagnetic iron oxide nanoparticles for cellular imaging and targeted therapy research. Curr Pharm Des. 2013;19:6575–93.PubMedPubMedCentralCrossRefGoogle Scholar
  131. Wei H, Bruns OT, Kaul MG, Hansen EC, Barch M, Wiśniowska A, et al. Exceedingly small iron oxide nanoparticles as positive MRI contrast agents. Proc Natl Acad Sci. 2017;114(9):2325–30.PubMedCrossRefPubMedCentralGoogle Scholar
  132. Wu W, He Q, Jiang C. Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett. 2008;3(11):397–415.PubMedPubMedCentralCrossRefGoogle Scholar
  133. Wu W, Wu Z, Yu T, Jiang C, Kim W-S. Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci Technol Adv Mater. 2015;16(2):023501.PubMedPubMedCentralCrossRefGoogle Scholar
  134. Wu F, Su H, Zhu X, Wang K, Zhang Z, Wong WK. Near-infrared emissive lanthanide hybridized carbon quantum dots for bioimaging applications. J Mater Chem B. 2016;4(38):6366–72.CrossRefGoogle Scholar
  135. Xu C, Sun S. New forms of superparamagnetic nanoparticles for biomedical applications. Adv Drug Deliv Rev. 2013;65:732–43.PubMedCrossRefPubMedCentralGoogle Scholar
  136. Yagawa Y, Tanigawa K, Kobayashi Y, Yamamoto M. Cancer immunity and therapy using hyperthermia with immunotherapy, radiotherapy, chemotherapy, and surgery. J Cancer Metastasis Treat. 2017;3(10):218.CrossRefGoogle Scholar
  137. Yanase M, Shinkai M, Honda H, Wakabayashi T, Yoshida J, Kobayashi T. Antitumor immunity induction by intracellular hyperthermia using magnetite cationic liposomes. Jpn J Cancer Res. 1998;89(7):775–82.PubMedPubMedCentralCrossRefGoogle Scholar
  138. Yin X, Zhang J, Wang X. Sequential injection analysis system for the determination of arsenic by hydride generation atomic absorption spectrometry. Fenxi Huaxue. 2004;32(10):1365–7.Google Scholar
  139. Yoffe S, Leshuk T, Everett P, Gu F. Superparamagnetic iron oxide nanoparticles (SPIONs): synthesis and surface modification techniques for use with MRI and other biomedical applications. Curr Pharm Des. 2013;19:493–509.PubMedCrossRefPubMedCentralGoogle Scholar
  140. Yu MK, Park J, Jon S. Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics. 2012;2(1):3–44.PubMedPubMedCentralCrossRefGoogle Scholar
  141. Zhang Y, Zhang B, Liu F, Luo J, Bai J. In vivo tomographic imaging with fluorescence and MRI using tumor-targeted dual-labeled nanoparticles. Int J Nanomed. 2013;9(1):33–41.CrossRefGoogle Scholar
  142. Zhu L, Zhou Z, Mao H, Yang L. Magnetic nanoparticles for precision oncology: theranostic magnetic iron oxide nanoparticles for image-guided and targeted cancer therapy. Nanomedicine. 2017;12(1):73–87.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Dipak Maity
    • 1
  • Ganeshlenin Kandasamy
    • 2
  • Atul Sudame
    • 3
  1. 1.Department of Chemical EngineeringInstitute of Chemical Technology Mumbai, IOC CampusBhubaneswarIndia
  2. 2.Department of Biomedical EngineeringVel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and TechnologyChennaiIndia
  3. 3.Department of Mechanical EngineeringShiv Nadar UniversityDadriIndia

Personalised recommendations