Advertisement

Towards Blockchained Challenge-Based Collaborative Intrusion Detection

  • Wenjuan Li
  • Yu WangEmail author
  • Jin Li
  • Man Ho Au
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11605)

Abstract

To protect distributed network resources and assets, collaborative intrusion detection systems/networks (CIDSs/CIDNs) have been widely deployed in various organizations with the purpose of detecting any potential threats. While such systems and networks are usually vulnerable to insider attacks, some kinds of trust mechanisms should be integrated in a real-world application. Challenge-based trust mechanisms are one promising solution, which can measure the trustworthiness of a node by sending challenges to other nodes. In the literature, challenge-based CIDNs have proven to be robust against common insider attacks, but it may still be susceptible to advanced insider attacks. How to further improve the robustness of challenge-based CIDNs remains an issue. Motivated by the recently rapid development of blockchains, in this work, we aim to combine these two and provide a blockchained challenge-based CIDN framework. Our evaluation shows that blockchain technology has the potential to enhance the robustness of challenge-based CIDNs in the aspects of trust management (i.e., enhancing the detection of insider nodes) and alarm aggregation (i.e., identifying untruthful inputs).

Keywords

Intrusion detection Collaborative network Insider attack Blockchain technology Challenge-based trust mechanism 

Notes

Acknowledgments

This work was funded by the National Natural Science Foundation of China (NSFC) Grant No. 61772148, 61802080 and 61802077.

References

  1. 1.
    Alexopoulos, N., Vasilomanolakis, E., Ivánkó, N.R., Mühlhäuser, M.: Towards blockchain-based collaborative intrusion detection systems. In: D’Agostino, G., Scala, A. (eds.) CRITIS 2017. LNCS, vol. 10707, pp. 107–118. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-99843-5_10CrossRefGoogle Scholar
  2. 2.
    Amazon Managed Blockchain: Easily create and manage scalable blockchain networks. https://aws.amazon.com/managed-blockchain/. Accessed 10 Apr 2019
  3. 3.
    Badertscher, C., Gazi, P., Kiayias, A., Russell, A., Zikas, V.: Ouroboros genesis: composable proof-of-stake blockchains with dynamic availability. In: Proceedings of ACM Conference on Computer and Communications Security (CCS), pp. 913–930 (2018)Google Scholar
  4. 4.
    Daian, P., Pass, R., Shi, E.: Snow white: robustly reconfigurable consensus and applications to provably secure proofs of stake. In: Financial Cryptography and Data Security (FC) (2019)Google Scholar
  5. 5.
    Duma, C., Karresand, M., Shahmehri, N., Caronni, G.: A trust-aware, P2P-based overlay for intrusion detection. In: DEXA Workshop, pp. 692–697 (2006)Google Scholar
  6. 6.
    Fadlullah, Z.M., Taleb, T., Vasilakos, A.V., Guizani, M., Kato, N.: DTRAB: combating against attacks on encrypted protocols through traffic-feature analysis. IEEE/ACM Trans. Netw. 18(4), 1234–1247 (2010)CrossRefGoogle Scholar
  7. 7.
    Friedberg, I., Skopik, F., Settanni, G., Fiedler, R.: Combating advanced persistent threats: from network event correlation to incident detection. Comput. Secur. 48, 35–47 (2015)CrossRefGoogle Scholar
  8. 8.
    Fung, C.J., Baysal, O., Zhang, J., Aib, I., Boutaba, R.: Trust management for host-based collaborative intrusion detection. In: De Turck, F., Kellerer, W., Kormentzas, G. (eds.) DSOM 2008. LNCS, vol. 5273, pp. 109–122. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-87353-2_9CrossRefGoogle Scholar
  9. 9.
    Fung, C.J., Zhu, Q., Boutaba, R., Basar, T.: Bayesian decision aggregation in collaborative intrusion detection networks. In: NOMS, pp. 349–356 (2010)Google Scholar
  10. 10.
    Almost half of companies still can’t detect IoT device breaches, reveals Gemalto study. https://www.gemalto.com/press/Pages/Almost-half-of-companies-still-can-t-detect-IoT-device-breaches-reveals-Gemalto-study.aspx. Accessed 10 Apr 2019
  11. 11.
    Leading the IoT: Gartner Insights on How to Lead in a Connected World. https://www.gartner.com/imagesrv/books/iot/iotEbook_digital.pdf. Accessed 22 Mar 2019
  12. 12.
    Gartner Identifies Top 10 Strategic IoT Technologies and Trends. https://www.gartner.com/en/newsroom/press-releases/2018-11-07-gartner-identifies-top-10-strategic-iot-technologies-and-trends. Accessed 22 Mar 2019
  13. 13.
    Golomb, T., Mirsky, Y., Elovici, Y.: CIoTA: Collaborative IoT Anomaly detection via blockchain. In: Proceedings of Workshop on Decentralized IoT Security and Standards (DISS), pp. 1–6 (2018)Google Scholar
  14. 14.
    Huebsch, R., et al.: The architecture of PIER: an internet-scale query processor. In: Proceedings of the 2005 Conference on Innovative Data Systems Research (CIDR), pp. 28–43 (2005)Google Scholar
  15. 15.
    Hyperledger C Open Source Blockchain Technologies. https://www.hyperledger.org/
  16. 16.
    Kiffer, L., Rajaraman, R., Shelat, A.: A better method to analyze blockchain consistency. In: Proceedings of ACM Conference on Computer and Communications Security (CCS), pp. 729–744 (2018)Google Scholar
  17. 17.
    Lei, A., Cruickshank, H.S., Cao, Y., Asuquo, P.M., Ogah, C.P.A., Sun, Z.: Blockchain-based dynamic key management for heterogeneous intelligent transportation systems. IEEE Internet Things J. 4(6), 1832–1843 (2017)CrossRefGoogle Scholar
  18. 18.
    Li, Z., Chen, Y., Beach, A.: Towards scalable and robust distributed intrusion alert fusion with good load balancing. In: Proceedings of the 2006 SIGCOMM Workshop on Large-Scale Attack Defense (LSAD), pp. 115–122 (2006)Google Scholar
  19. 19.
    Li, W., Meng, Y., Kwok, L.-F.: Enhancing trust evaluation using intrusion sensitivity in collaborative intrusion detection networks: feasibility and challenges. In: Proceedings of the 9th International Conference on Computational Intelligence and Security (CIS), pp. 518–522. IEEE (2013)Google Scholar
  20. 20.
    Li, W., Meng, W., Kwok, L.-F.: Design of intrusion sensitivity-based trust management model for collaborative intrusion detection networks. In: Zhou, J., Gal-Oz, N., Zhang, J., Gudes, E. (eds.) IFIPTM 2014. IAICT, vol. 430, pp. 61–76. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-43813-8_5CrossRefGoogle Scholar
  21. 21.
    Li, W., Meng, W.: Enhancing collaborative intrusion detection networks using intrusion sensitivity in detecting pollution attacks. Inf. Comput. Secur. 24(3), 265–276 (2016)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Li, L., et al.: CreditCoin: a privacy-preserving blockchain-based incentive announcement network for communications of smart vehicles. IEEE Trans. Intell. Transp. Syst. 19(7), 2204–2220 (2018)CrossRefGoogle Scholar
  23. 23.
    Li, W., Meng, W., Kwok, L.-F., Ip, H.H.S.: PMFA: toward passive message fingerprint attacks on challenge-based collaborative intrusion detection networks. In: Chen, J., Piuri, V., Su, C., Yung, M. (eds.) NSS 2016. LNCS, vol. 9955, pp. 433–449. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46298-1_28CrossRefGoogle Scholar
  24. 24.
    Li, W., Meng, W., Kwok, L.-F.: SOOA: exploring special on-off attacks on challenge-based collaborative intrusion detection networks. In: Au, M.H.A., Castiglione, A., Choo, K.-K.R., Palmieri, F., Li, K.-C. (eds.) GPC 2017. LNCS, vol. 10232, pp. 402–415. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-57186-7_30CrossRefGoogle Scholar
  25. 25.
    Li, W., Meng, W., Kwok, L.-F.: Investigating the influence of special on-off attacks on challenge-based collaborative intrusion detection networks. Future Internet 10(1), 1–16 (2018)CrossRefGoogle Scholar
  26. 26.
    Li, W., Tug, S., Meng, W., Wang, Y.: Designing collaborative blockchained signature-based intrusion detection in IoT environments. Future Gener. Comput. Syst. 96, 481–489 (2019)CrossRefGoogle Scholar
  27. 27.
    Li, W., Kwok, L.-F.: Challenge-based collaborative intrusion detection networks under passive message fingerprint attack: a further analysis. J. Inf. Secur. Appl. 47, 1–7 (2019)Google Scholar
  28. 28.
    Makhdoom, I., Abolhasan, M., Abbas, H., Ni, W.: Blockchain’s adoption in IoT: the challenges, and a way forward. J. Netw. Comput. Appl. 125, 251–279 (2019)CrossRefGoogle Scholar
  29. 29.
    Marr, B.: 5 Blockchain Trends Everyone Should Know About. https://www.forbes.com/sites/bernardmarr/2019/01/28/5-blockchain-trends-everyone-should-know-about/#30c1ab523bb9. Accessed 10 Apr 2019
  30. 30.
    Meng, Y., Kwok, L.F.: Enhancing false alarm reduction using voted ensemble selection in intrusion detection. Int. J. Comput. Intell. Syst. 6(4), 626–638 (2013)CrossRefGoogle Scholar
  31. 31.
    Meng, Y., Li, W., Kwok, L.F.: Towards adaptive character frequency-based exclusive signature matching scheme and its applications in distributed intrusion detection. Comput. Netw. 57(17), 3630–3640 (2013)CrossRefGoogle Scholar
  32. 32.
    Meng, W., Li, W., Kwok, L.-F.: An evaluation of single character frequency-based exclusive signature matching in distinct IDS environments. In: Chow, S.S.M., Camenisch, J., Hui, L.C.K., Yiu, S.M. (eds.) ISC 2014. LNCS, vol. 8783, pp. 465–476. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-13257-0_29CrossRefGoogle Scholar
  33. 33.
    Meng, W., Li, W., Kwok, L.-F.: EFM: enhancing the performance of signature-based network intrusion detection systems using enhanced filter mechanism. Comput. Secur. 43, 189–204 (2014)CrossRefGoogle Scholar
  34. 34.
    Meng, W., Li, W., Kwok, L.-F.: Design of intelligent KNN-based alarm filter using knowledge-based alert verification in intrusion detection. Secur. Commun. Netw. 8(18), 3883–3895 (2015)CrossRefGoogle Scholar
  35. 35.
    Meng, W., Luo, X., Li, W., Li, Y.: Design and evaluation of advanced collusion attacks on collaborative intrusion detection networks in practice. In: Proceedings of the 15th IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom 2016), pp. 1061–1068 (2016)Google Scholar
  36. 36.
    Meng, W., Li, W., Xiang, Y., Choo, K.K.R.: A Bayesian inference-based detection mechanism to defend medical smartphone networks against insider attacks. J. Netw. Comput. Appl. 78, 162–169 (2017)CrossRefGoogle Scholar
  37. 37.
    Meng, W., Li, W., Kwok, L.-F.: Towards effective trust-based packet filtering in collaborative network environments. IEEE Trans. Netw. Serv. Manag. 14(1), 233–245 (2017)CrossRefGoogle Scholar
  38. 38.
    Meng, W., Tischhauser, E.W., Wang, Q., Wang, Y., Han, J.: When intrusion detection meets blockchain technology: a review. IEEE Access 6(1), 10179–10188 (2018)CrossRefGoogle Scholar
  39. 39.
    Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). http://bitcoin.org/bitcoin.pdf
  40. 40.
    Orcutt, M.: How secure is blockchain really? https://www.technologyreview.com/s/610836/how-secure-is-blockchain-really/. Accessed 22 Mar 2019
  41. 41.
    Papadopoulos, C., Lindell, R., Mehringer, J., Hussain, A., Govindan, R.: COSSACK: coordinated suppression of simultaneous attacks. In: Proceedings of the 2003 DARPA Information Survivability Conference and Exposition (DISCEX), pp. 94–96 (2003)Google Scholar
  42. 42.
    Pass, R., Shi, E.: Thunderella: blockchains with optimistic instant confirmation. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 3–33. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-78375-8_1CrossRefGoogle Scholar
  43. 43.
    Porras, P.A., Neumann, P.G.: EMERALD: event monitoring enabling responses to anomalous live disturbances. In: Proceedings of the 20th National Information Systems Security Conference, pp. 353–365 (1997)Google Scholar
  44. 44.
    Roesch, M.: Snort: lightweight intrusion detection for networks. In: Proceedings of USENIX Lisa Conference, pp. 229–238 (1999)Google Scholar
  45. 45.
    Scarfone, K., Mell, P.: Guide to intrusion detection and prevention systems (IDPS). NIST Special Publication 800-94 (2007)Google Scholar
  46. 46.
    Snapp, S.R., et al.: DIDS (distributed intrusion detection system) - motivation, architecture, and an early prototype. In: Proceedings of the 14th National Computer Security Conference, pp. 167–176 (1991)Google Scholar
  47. 47.
    Sharma, V.: An energy-efficient transaction model for the blockchain-enabled internet of vehicles (IoV). IEEE Commun. Lett. 23(2), 246–249 (2019)CrossRefGoogle Scholar
  48. 48.
    Singh, S., Ra, I.H., Meng, W., Kaur, M., Cho, G.H.: SH-BlockCC: a secure and efficient IoT smart home architecture based on cloud computing and blockchain technology. Int. J. Distrib. Sens. Netw. (in press). SAGEGoogle Scholar
  49. 49.
    Snort: An an open source network intrusion prevention and detection system (IDS/IPS). http://www.snort.org/
  50. 50.
    Steichen, M., Hommes, S., State, R.: ChainGuard - a firewall for blockchain applications using SDN with OpenFlow. In: Proceedings of International Conference on Principles, Systems and Applications of IP Telecommunications (IPTComm), pp. 1–8 (2017)Google Scholar
  51. 51.
    Symantec 2019 Internet Security Threat Report. https://www.symantec.com/security-center/threat-report. Accessed 22 Mar 2019
  52. 52.
    Tug, S., Meng, W., Wang, Y.: CBSigIDS: towards collaborative blockchained signature-based intrusion detection. In: Proceedings of The 1st IEEE International Conference on Blockchain (Blockchain) (2018)Google Scholar
  53. 53.
    Tuan, T.A.: A game-theoretic analysis of trust management in P2P systems. In: Proceedings of ICCE, pp. 130–134 (2006)Google Scholar
  54. 54.
    Vasilomanolakis, E., Karuppayah, S., Muhlhauser, M., Fischer, M.: Taxonomy and survey of collaborative intrusion detection. ACM Comput. Surv. 47(4), 55:1–55:33 (2015)CrossRefGoogle Scholar
  55. 55.
    Vigna, G., Kemmerer, R.A.: NetSTAT: a network-based intrusion detection approach. In: Proceedings of Annual Computer Security Applications Conference (ACSAC), pp. 25–34 (1998)Google Scholar
  56. 56.
    Wan, C., et al.: Goshawk: a novel efficient, robust and flexible blockchain protocol. In: Guo, F., Huang, X., Yung, M. (eds.) Inscrypt 2018. LNCS, vol. 11449, pp. 49–69. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-14234-6_3CrossRefGoogle Scholar
  57. 57.
    Wang, Y., Meng, W., Li, W., Liu, Z., Liu, Y., Xue, H.: Adaptive machine learning-based alarm reduction via edge computing for distributed intrusion detection systems. Concurr. Comput. Pract. Exp. (2019).  https://doi.org/10.1002/cpe.5101
  58. 58.
    Wood, G.: Ethereum: a secure decentralised generalised transaction ledger. EIP-150 Revision (2016)Google Scholar
  59. 59.
    Wu, Y.-S., Foo, B., Mei, Y., Bagchi, S.: Collaborative intrusion detection system (CIDS): a framework for accurate and efficient IDS. In: Proceedings of the 2003 Annual Computer Security Applications Conference (ACSAC), pp. 234–244 (2003)Google Scholar
  60. 60.
    Wüst, K., Gervais, A.: Do you need a blockchain? In: CVCBT, pp. 45–54 (2018)Google Scholar
  61. 61.
    Yegneswaran, V., Barford, P., Jha, S.: Global Intrusion Detection in the DOMINO Overlay System. In: Proceedings of the 2004 Network and Distributed System Security Symposium (NDSS), pp. 1–17 (2004)Google Scholar
  62. 62.
    The Zeek Network Security Monitor. https://www.zeek.org/

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Computer ScienceCity University of Hong KongKowloonHong Kong
  2. 2.School of Computer ScienceGuangzhou UniversityGuangzhouChina
  3. 3.Department of ComputingThe Hong Kong Polytechnic UniversityHung HomHong Kong

Personalised recommendations