Advertisement

Active Flow Control Strategies and Tools for Turbulent Flows

  • Jean-Paul BonnetEmail author
  • Ning Qin
Chapter
Part of the Computational Methods in Applied Sciences book series (COMPUTMETHODS, volume 52)

Abstract

In this chapter we present considerations on the impact of the turbulence characteristics of most flows of industrial interest on the flow control interpretations or strategies. In the second part we will give an overview of the CFD approaches, including actuator integration methods. The actuators characteristics will then be presented with the associated detection methods. Considerations on the spatial and time characteristics of flow control will be provided.

Keywords

Flow control methods Turbulence management CFD methods for flow control Actuators Sensors 

Notes

Acknowledgements

JPB thanks fruitful discussions with B. N. Noack and V. Parezanović and C. Vassilicos, with a particular thank to J. Delville, in memoriam. Nicoals Bénard is also acknowledged for the DBD section. NQ would like to thank X Ming, K. Kontis, N Wood for stimulating discussions.

References

  1. 1.
    Schubauer GB, Skamstad HK (1947) Laminar boundary layer oscillation and stability of laminar flow. J Aeronaut Sci 14Google Scholar
  2. 2.
    Poisson-Quinton P, Lepage L (1961) Survey of French research on the control of boundary layers and circulation. In: Lachman GV (ed) Boundary layer and flow controlGoogle Scholar
  3. 3.
    Gad-el-Hak M, Bushnell DM (1991) Separation control: a review. J Fluids Eng 113(1)Google Scholar
  4. 4.
    Gad-el-Hak M, Pollard A, Bonnet JP (1998) Flow control: fundamentals and practices. Springer, BerlinGoogle Scholar
  5. 5.
    King R (ed) (2007) Active flow control, notes on numerical fluid mechanics and interdisciplinarity design, vol 95. Springer, BerlinzbMATHGoogle Scholar
  6. 6.
    Collis SS, Joslinb RD, Seifert A, Theofilis V (2004) Issues in active flow control: theory, control, simulation and experiment. Prog Aerosp Sci 40Google Scholar
  7. 7.
    Choi J, Choi H, Jeon WP (2002) AIAA J 40(5)Google Scholar
  8. 8.
    Choi K-S, De Bisschop J-R, Clayton BR (1998) Turbulent boundary-layer control by means of spanwise-wall oscillation. AIAA J 36Google Scholar
  9. 9.
    Quadrio M, Ricco P, Viotti C (2009). Streamwise-traveling waves of spanwise wall velocity for turbulent drag reduction. J Fluid MechGoogle Scholar
  10. 10.
    Wong CW, Zhou Y, Li Y, Li Y (2015) Active drag reduction in a turbulent boundary layer based on plasma-actuator generated streamwise vortices, Paper 9A-6, TSFP9. Melbourne, AustraliaGoogle Scholar
  11. 11.
    Zhou K, Doyle JC (1998) Essentials of robust control. Prentice-Hall, Englewood CliffsGoogle Scholar
  12. 12.
    Lee WY, Wong, M, Zohar Y (2002) Microchannels in series connected via a contraction/expasion. J Fluid Mech 459Google Scholar
  13. 13.
    Cordier L, Noack BR, Tissot G, Lehnasch G, Delville J, Balajewicz M, Daviller G, Niven RK (2013) Identification strategies for model-based control. Exp Fluids 54(8)Google Scholar
  14. 14.
    Benard N, Pons-Prats J, Periaux J, Bugeda G, Braud P, Bonnet JP, Moreau E (2016a) Turbulent separated shear flow control by surface plasma actuator: experimental optimization by genetic algorithm approach. Exp Fluids 57:22Google Scholar
  15. 15.
    Benard N, Moreau E, Griffin J, Cattafesta L (2009) Plasma flow control—autonomous lift improvement by slope-seeking. AIAA paper 2009-4118Google Scholar
  16. 16.
    Liu SJ, Krstic M (2012) Stochastic averaging and stochastic seeking, communication and control engineering. Springer, BerlinzbMATHGoogle Scholar
  17. 17.
    Duriez T, Brunton SL, Noack BR (2016) Machine learning control—taming non linear dynamics and turbulence. In: Series “fluid dynamics and its applications, 116. Springer, BerlinGoogle Scholar
  18. 18.
    Parezanović V, Cordier L, Spohn A, Duriez T, Noack BR, Bonnet JP, Segond M, Abel M, Brunton SL (2016), Frequency selection by feedback control in a turbulent shear flow. J. Fluid Mech 797Google Scholar
  19. 19.
    Rodi W (1975) A review of experimental data of uniform density free turbulent boundary layers. In: Launder BE (ed) Studies in convection, vol 1. Academic Press, NY, pp 79–165Google Scholar
  20. 20.
    Lumley J, Newman G (1977) The return to isotropy of homogeneous turbulence. J Fluid Mech 82–1:161–178MathSciNetzbMATHGoogle Scholar
  21. 21.
    Frohnapfel B, Lammers P, Jovanović J, Durst F (2007) Interpretation of the mechanism associated with turbulent drag reduction in terms of anisotropy invariants. J. Fluid Mech 577:457–466zbMATHGoogle Scholar
  22. 22.
    Vassilicos JC (2015) Dissipation in turbulent flows. Annu Rev Fluid Mech 49(95):114Google Scholar
  23. 23.
    Lumley J (1992) Some comments on turbulence. Phys Fluids 4:206zbMATHGoogle Scholar
  24. 24.
    Pope S (2000) Turbulent flows. Cambridge University Press, CambridgeGoogle Scholar
  25. 25.
    Lavoie P, Djenidi L, Antonia RA (2007) Effects of initial conditions in decaying turbulence generated by passive grids. J Fluid Mech 585zbMATHGoogle Scholar
  26. 26.
    Valente PC, Vassilicos JC (2015) The energy cascade in grid-generated non-equilibrium decaying turbulence. Phys Fluids 27Google Scholar
  27. 27.
    Michalke A (1965) Vortex formation in a free boundary layer according to stability theory. J Fluid Mech 22MathSciNetGoogle Scholar
  28. 28.
    Ho CM, Huerre P (1984) Pertubed free shear layers. Annu Rev Fluid Mech 16Google Scholar
  29. 29.
    Reynolds WC, Hussain AKMF (1972) The mechanics of an organized wave in turbulent shear flow. J Fluid Mech 54Google Scholar
  30. 30.
    Frohnapfel B, Hasegawa Y, Quadrio M (2012) Money versus time: evaluation of flow control in terms of energy consumption and convenience. J. Fluid Mech 700zbMATHGoogle Scholar
  31. 31.
    Seifert A (2015) Evaluation criteria and performance comparison of actuators, instability and control of massively separated flows. In: Theofilis V, Soria J (eds) Fluid mechanics and its applications, vol 107. Springer, BerlinGoogle Scholar
  32. 32.
    Wiltse J, Glezer A (1993) Manipulation of free shear flows using piezoelectric actuators. J Fluid Mech 249:261–285Google Scholar
  33. 33.
    Luchtenburg DM, Güther B, Noack BR, King R, Tadmor G (2009) A generalized mean-field model of the natural and high-frequency actuated flow around a high-lift configuration. J Fluid Mech 623MathSciNetzbMATHGoogle Scholar
  34. 34.
    Glezer A, Amitai M, Onohan AM (2005) Aspects of low and high frequency actuation for aerodynamic flow control. AIAA J 43Google Scholar
  35. 35.
    Barros D, Ruiz T, Borée J, Noack B, (2014) Control of a three-dimensional blunt body wake using low and high frequency pulsed jets. Int J Flow Control 6(1)Google Scholar
  36. 36.
    Oxalde AR, Morrison JF, Qubain A, Rigas G (2015) High-frequency forcing of a turbulent axisymmetric wake. J Fluid Mech 770:305–318Google Scholar
  37. 37.
    Benton S, Visbal MR (2016) Investigation of high-frequency separation control mechanism for delay of unsteady separation. In: 8th AIAA Flow Control Conference paper 2016-4241Google Scholar
  38. 38.
    Dandois J, Garnier E, Sagaut P (2007) Numerical simulation of active separation control by a synthetic jet. J Fluid Mech 574:25–58zbMATHGoogle Scholar
  39. 39.
    Stanek MJ, Visbal MR, Rietta DP, Rubin SG, Khosla PK (2007) On a mechanism of stabilizing turbulent free shear layers in cavity flows. Comput Fluids 36(10)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Vukasinovic B, Glezer A, Rusak Z (2007) Experimental and numerical investigation of controlled, small-scale motions in a turbulent shear layer. In: 3rd international symposium on integrating CFD and experiments in aerodynamics U.S. Air Force Academy, CO, USAGoogle Scholar
  41. 41.
    Parezanovic V, Laurentie J-C, Fourment C, Delville J, Bonnet J-P, Spohn A, Duriez T, Cordier L, Noack BR, Abel M, Segond M, Shaqarin T, Brunton SL (2014) Mixing layer manipulation experiment from open-loop forcing to closed-loop machine learning control. Flow Turbul Combust 94(1):155–173Google Scholar
  42. 42.
    Mons V, Chassaing JC, Gomez T, Sagaut P (2014) Is isotropic turbulence decay governed by asymptotic behavior of large scales? An eddy-damped quasi-normal Markovian–based data assimilation study. Phys Fluids 26:115105Google Scholar
  43. 43.
    Bos W, Shao L, Bertoglio JP (2007) Spectral imbalance and the normalized dissipation rate of turbulence? Phys Fluids 19zbMATHGoogle Scholar
  44. 44.
    Vassilicos JC (2016) Unsteady turbulence cascades. Phys Rev E.  https://doi.org/10.1103/physreve.00.003100
  45. 45.
    Spalart PR, Jou W-H, Michael S, Allmaras SR (1997) Comments on the feasibility of LES for wings and on a Hybrid RANS/LES approach. In: Advances in DNS/LES, 1st AFOSR International Conference on DNS/LESGoogle Scholar
  46. 46.
    Breuer M, Jovivi N, Mazaev K (2003) Comparison of DES, RANS and LES for the separated flow around a flat plate at high incidence. Int J Numer Methods Fluids 43:357–388Google Scholar
  47. 47.
    Spalart RP (2009) Detached-eddy simulation. Annu Rev Fluid Mech 41:181181evixii, 16, 22, 24, 171zbMATHGoogle Scholar
  48. 48.
    Shur M, Spalart PR, Strelets M, Travin A (1999) Detached-eddy simulation of an airfoil at high-angle of attackGoogle Scholar
  49. 49.
    Spalart PR, Allmaras SR (1992) A one-equation turbulence model for aerodynamic flows. AIAA paper 92-0439Google Scholar
  50. 50.
    Panguluri S, Reasor D, LeBeau RP Jr (2007) Investigation of grey area construction on the performance of detached eddy simulation. AIAA paper 2007–4095Google Scholar
  51. 51.
    Spalart PR et al (2006) A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theoret Comput Fluid Dyn 20:181–195zbMATHGoogle Scholar
  52. 52.
    Shur M, Spalart PR, Strelets M, Travin A (2008) A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. Int J Heat Fluid Flow 29:1638ionalGoogle Scholar
  53. 53.
    Deng S, Jiang L, Liu C (2007) DNS for flow separation control around an airfoil by pulsed jets. Comput Fluids 36(6):1040uidsjezbMATHGoogle Scholar
  54. 54.
    Jewkes JW, Chung YM (2010) Low velocity-ratio pitched and skewed jet in a turbulent boundary layer. In: Mallinson GD, Cater JE (eds) 17th Australasian fluid mechanics conference, Auckland, New ZealandGoogle Scholar
  55. 55.
    Sau R, Mahesh K (2010) Optimization of pulsed jets in crossflow. J Fluid Mechanics 653(365):46zbMATHGoogle Scholar
  56. 56.
    Laval JP et al (2010) Large-eddy simulations of control of a separated flow over a 2D bump by means of pulsed jets. J Turbul 11:N52Google Scholar
  57. 57.
    Bobonea A (2012) Impact of pulsed blowing jet on aerodynamic characteristics of wind turbine airfoils. In: AIP conference proceedings, vol 1493, p 170Google Scholar
  58. 58.
    Kral LD et al (1997) Numerical simulation of synthetic jet actuators. AIAA Paper 97-1824Google Scholar
  59. 59.
    Mittal R, Rampunggoon P, Udaykumar HS (2001) Interaction of a synthetic jet with a flat plate boundary layer. AIAA paper 2001-2773Google Scholar
  60. 60.
    Lee CY, Goldstein DB (2002) Two-dimensional synthetic jet simulation. AIAA J 40(3):510al syGoogle Scholar
  61. 61.
    Ravi BR, Mittal R, Najjar FM (2004) Study of three-dimensional synthetic jet flowfields using direct numerical simulation. AIAA paper 51Google Scholar
  62. 62.
    You D, Moin P (2006) Large-eddy simulation of flow separation over an airfoil with synthetic jet control. In: Center for turbulence research annual research briefs, 337surbuGoogle Scholar
  63. 63.
    You D, Moin P (2007) Study of flow separation over an airfoil with synthetic jet control using large-eddy simulation. In: Annual research briefs, center for turbulence research, Stanford University, 311lenceGoogle Scholar
  64. 64.
    Qin N, Xia H (2008) Detached eddy simulation of a synthetic jet for flow control. Proc Inst Mech Eng Part I: J Syst Control Eng 222(5):373–380Google Scholar
  65. 65.
    Hong G (2012) Numerical investigation to forcing frequency and amplitude of synthetic jet actuators. AIAA J 50(4):788estigGoogle Scholar
  66. 66.
    Sawant SG et al (2012) Modeling of electrodynamic zero-net mass-flux actuators. AIAA J 50(6):1347amic ZGoogle Scholar
  67. 67.
    Seifert A, Darabi A, Wygnanski I (1996) Delay of airfoil stall by periodic excitation. J Aircraft 33(4)Google Scholar
  68. 68.
    Seifert A (2009) Closed-loop active flow control systems: actuators. In: King R (ed) Notes on numerical fluid dynamics and multidisciplinary design, active flow control, vol 95. Springer, BerlinGoogle Scholar
  69. 69.
    Cattafesta LN III, Sheplak N (2011) Actuators for active flow control. Annu Rev Fluid Mech 43:247–272zbMATHGoogle Scholar
  70. 70.
    Wehrmann O (1965) Tollmien—Schlichting waves under the influence of a flexible wall. Phys Fluids 1389–1390Google Scholar
  71. 71.
    Breuer KS, Haritonidis JH, Landahl MT (1989) The control of transient disturbances in a flat plate boundary layer through active wall motion. Phys Fluids A 1:574Google Scholar
  72. 72.
    Wilkinson SP, Malik MR (1985) Stability experiments in a flow over a rotating disk. AIAA J 23Google Scholar
  73. 73.
    Sinha NK, Ananthkrishnan N (2000) Level flight trim and stability analysis using continuation methods. In AIAA atmospheric flight mechanics conference, Paper 2000-4112, Denver, CO, USAGoogle Scholar
  74. 74.
    Bird J, Santer M, Morrison J (2015) Turbulent boundary layer control through spanwise wall oscillation using Kagome lattice structures. In: 68th Annual Meeting of the APS Division of Fluid Dynamics, vol 60, no 21Google Scholar
  75. 75.
    Kikuchi S, Fukunishi Y (1999) Active flow control technique using piezo-film actuators applied to the sound generation by a cavity. ASME FEDSM99-7232Google Scholar
  76. 76.
    Amir M, Kontis K (2008b) Application of piezoelectric actuators at subsonic speeds. J Aircr 45, 1419–1430.  https://doi.org/10.2514/1.35630Google Scholar
  77. 77.
    Glezer A, Amitai MA (2002) Synthetic jets. Annu Rev Fluid Mech 34:503–529.  https://doi.org/10.1146/annurev.fluid.34.090501.094913MathSciNetCrossRefzbMATHGoogle Scholar
  78. 78.
    Watson M, Jaworski AJ, Wood NJ (2003) Contribution to the understanding of flow interactions between multiple synthetic jets. AIAA J 41(4):747–749Google Scholar
  79. 79.
    Caruana D, Rogier F, Dufour G, Gleyzes C (2013) The plasma synthetic jet actuator, physics, modelling and flow control. Application to separation. ONERA J Aerosp Lab 6Google Scholar
  80. 80.
    Emerick T, Ali MY, Foster C, Alvi FS, Popkin S (2014) Spark jet characterizations in quiescent and supersonic flow fields. Exp Fluids 55Google Scholar
  81. 81.
    Grossman KR, Ossman KR, Cybyk BZ, Wie BZ (2003) Spark jet actuators for flow control. AIAA paper 2003-0057Google Scholar
  82. 82.
    Crittenden TM, Woo GTK, Glezer A (2012) Combustion powered actuators for separation control. AIAA paper 2012-3135Google Scholar
  83. 83.
    Moreau E (2007) Airflow control by non-thermal plasma actuators. J Phys D: Appl Phys 40(3)Google Scholar
  84. 84.
    Corke TC, Enloe CL, Wilkinson SP (2010) Dielectric barrier discharge plasma actuators for flow control. Annu Rev Fluid Mech 42(2010):505–529Google Scholar
  85. 85.
    Benard N, Moreau E (2014) Electrical and mechanical characteristics of surface AC dielectric barrier discharge plasma actuators applied to airflow control. Exp Fluids 55:1846Google Scholar
  86. 86.
    Maden I, Maduta R, Kriegseis J, Jakirlić S, Schwarz C, Grundmann S, Tropea C (2013) Experimental and computational study of the flow induced by a plasma actuator. Int J Heat Fluid Flows 41:80–89Google Scholar
  87. 87.
    Post ML, Corke TC (2003) Separation control on high angle of attack airfoil using plasma actuators. AIAA paper 2003-1024Google Scholar
  88. 88.
    Goeksel B, Greenblatt I, Nayeri C, Paschereit C (2006) Steady and unsteady plasma wall jets for separation and circulation control. AIAA paper 2006-3686Google Scholar
  89. 89.
    Corke T, Post M, Orlov D (2009) Single dielectric barrier discharge plasma enhanced aerodynamics: physics, modeling and applications. Exp Fluids 46:1–26Google Scholar
  90. 90.
    Little L, Nishihara M, Adamovich I, Samimy M (1999) High-lift airfoil trailing edge separation control using a single dielectric barrier discharge plasma actuator. Exp Fluids.  https://doi.org/10.1007/s00348-009-0755-xGoogle Scholar
  91. 91.
    Jukes TN, Choi K-S, Johnson GA, Scott SJ (2006) Characterisation of surface plasma induced wall flows through velocity and temperature measurement. AIAA J 44(4):764–771Google Scholar
  92. 92.
    Gregory JW, Ruotolo JC, Byerley AR, McLaughlin TE (2007) Switching behavior of a plasma-fluidic actuator. In: 45th AIAA aerospace sciences meeting (AIAA 2007-0785)Google Scholar
  93. 93.
    Bohlito M, Jacob J (2009) Active vortex generators using jet vectoring plasma actuators. SAE Int J Aerosp 1(1):610–618Google Scholar
  94. 94.
    Benard N, Bonnet JP, Touchard G, Moreau E (2008) Flow control by dielectric barrier discharge actuators: jet mixing enhancement. AIAA J 46(9)Google Scholar
  95. 95.
    Benard N, Sujar-Garrido P, Bonnet JP, Moreau E (2016b) Control of the coherent structure dynamics downstream of a backward facing step by DBD plasma actuator. Int J Heat Fluid Flow 61(Part A):158–173Google Scholar
  96. 96.
    Samimy M, Adamovich I, Webb B, Kastner J, Hileman J, Keshav S, Palm P (2004) Development and characterization of plasma actuators for high-speed jet control. Exp Fluids 37:577–588Google Scholar
  97. 97.
    Utkin YG, Keshav S, Kim JH, Kastner J, Adamovich IV, Samimy M (2007) Development and use of localized arc filament plasma actuators for high-speed flow control. J Phys D: Appl Phys 40(3)Google Scholar
  98. 98.
    Bonnet JP, Acher G, Benard N, Lebedev A, Moreau E (2016) Sonic flow control by plasma: a new pulsed jet actuator. ICTAM Montreal, CanadaGoogle Scholar
  99. 99.
    Roupassov DV, Nikipelov AA, Nudnova MM, Starikovskii AY (2009) Flow separation control by plasma actuator with nanosecond pulsed-periodic discharge. AIAA J 47(1):168–185Google Scholar
  100. 100.
    Unfer T, Boeuf JP (2009) Modelling of a nanosecond surface discharge actuator. J Phys D Appl Phys 42(19)Google Scholar
  101. 101.
    Starikovskiy A, Pancheshnyi S (2013) Dielectric barrier discharge development at low and moderate pressure conditions. AIAA Paper 2013-0902Google Scholar
  102. 102.
    Correale G, Kontis M (2015) Control of backward facing step flow using NS-DBD plasma actuators. 9C-4 paper, TSFP9, Melbourne, AustraliaGoogle Scholar
  103. 103.
    Woszidlo R, Nawroth H, Raghu S, Wygnanski IJ (2010) Parametric study of sweeping jet actuators for separation control. In: AIAA 5th Flow Control Conference paper 2010-4247Google Scholar
  104. 104.
    Schatzman D, Wilson J, Arad E, Seifert A, Shtendel T (2014) Drag reduction mechanisms of suction-an-oscillatory-blowing flow control. AIAA J 52(11)Google Scholar
  105. 105.
    Schatzman D, Wilson J, Marom L, Palei V, Seifert A, Arad E (2015) Suction and oscillatory blowing interaction with boundary layers. AIAA PaperGoogle Scholar
  106. 106.
    Upadhyay P, Gustavsson JPR, Alvi FS (2016) Development and characterization of high-frequency resonance-enhanced microjet actuators for control of high-speed jets. Exp Fluids 2016:57Google Scholar
  107. 107.
    Andino MY, Lin JC, Washburn E, Whalen EA, Graff EC, Wygnanski IJ (2015) Flow separation control on a full scale vertical tail model using sweeping jet actuators. AIAA Sci Tech paper 2015-0785Google Scholar
  108. 108.
    Jacquin L (2009) Scales in turbulent motions. ONERA J Aerosp Lab 1Google Scholar
  109. 109.
    Arakeri V, Krothapalli A, Siddavaram V, Alkislar MB, Lourenco LM (2003) On the use of microjets to suppress turbulence in a Mach 0.9 axisymmetric jet. J. Fluid Mech 490:75zbMATHGoogle Scholar
  110. 110.
    Castelain T, Sunyach M, Juvé D, Béra J-C (2008) Jet-noise reduction by impinging microjets: an acoustic investigation testing microjet parameters. AIAA J 46(5)Google Scholar
  111. 111.
    Laurendeau E, Jordan P, Bonnet JP, Delville J, Parnaudeau P, Lamballais E (2008) Subsonic jet noise reduction by fluidic control: the interaction region and the global effect. Phys Fluids 20(1)zbMATHGoogle Scholar
  112. 112.
    Johari H, Rixon GS (2003) Effects of pulsing on a vortex generator jet. AIAA J 41Google Scholar
  113. 113.
    Stanlov O, Seifert A (2008) On amplitude scaling for active separation control. In: International conference on jets, wakes and separated flows TU BerlinGoogle Scholar
  114. 114.
    Seifert A (2015) Evaluation criteria and performance comparison of actuators. Fluid Mech Its Appl 107:59–64.  https://doi.org/10.1007/978-3-319-06260-0_8Google Scholar
  115. 115.
    Wong WS, Qin N, Sellars N, Holden H, Babinsky H (2008) A combined experimental and numerical study of flow structures over 3D shock control bumps. Aerosp Sci Technol 12:436–447Google Scholar
  116. 116.
    Amir M, Kontis K (2008a) Oscillation effects on boundary-layer development under the influence of favourable pressure gradients. J Aircr 45(6):1955–1968Google Scholar
  117. 117.
    Goldstein RJ (1996) Fluid Mechanics measuremensts. Taylor and Francis, Washington, DCGoogle Scholar
  118. 118.
    Reda DC, Muratore JJ Jr (1994) A new technique for the measurement of surface shear stress vectors using liquid crystal coatings. AIAA paper 94-0729Google Scholar
  119. 119.
    Hall JW, Tinney C, Ausseur JM, Pinier JT, Hall AM, Glauser MN (2008) IUTAM symposium on flow control and MEMS. In: Morrison JF, Birch DM, Lavoie P (eds) Springer, BerlinGoogle Scholar
  120. 120.
    Sheplak M, Cattafesta L, Nishida T, Mcginlevet C (2004) MEMS Shear Stress Sensors: Promise and Progress. In: 24th AIAA Aerodynamic measurement technology and ground testing conference (AIAA 2004-2606, Portland)Google Scholar
  121. 121.
    Baars WJ, Squire DT, Talluru KM, Abbassi MR, Hutchins N, Marusic I (2016) Wall-drag measurements of smooth- and rough-wall turbulent boundary layers using a floating element. Exp Fluids 57(90):1–16Google Scholar
  122. 122.
    Hochareon MB, Fontaine A (2004) Wall shear-rate estimation within the 50cc Penn State artificial heart using PIV, J. of Biomech. Eng. 126:430–437Google Scholar
  123. 123.
    Tarasov VN, Orlov AA (1990) Tarasov V N and Orlov A A 1990 Method for determining shear stress on aerodynamic model surface. Pat Russ 4841553/23/1990Google Scholar
  124. 124.
    Siaw WL, Bonnet JP (2017) Transient phenomena in separation control over a NACA 0015 airfoil. Int J Heat Fluid Flow http://www.sciencedirect.com/science/journal/0142727X
  125. 125.
    Lui T, Sullivan JP (2005) Pressure and temperature sensitive paints, experimental fluid mechanics. Springer, BerlinGoogle Scholar
  126. 126.
    Bolitho M, Jacob JD (2008) Thrust vectoring flow control using plasma synthetic jet actuators. AIAA paper 2008-1429Google Scholar
  127. 127.
    Debien A, Aubrun S, Mazelier N, Kourta A (2015) Active separation control process over a sharp edge ramp, 3D-1 paper, TSFP9. Melbourne, AustraliaGoogle Scholar
  128. 128.
    Ming X, Dai CH (1991) A new phenomenon of acoustic streaming. Acta Mech Sinica. Proceedings of the international conference on fluid dynamics measurement and its applications Oct 1989. vol. 7(3). Beijing ChinaGoogle Scholar
  129. 129.
    Ming X (1992) New phenomenon of rectifying effect, Chinese. J Theor Appl Mech 24(1):52–60Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institut PPRIMECNRS-Université de Poitiers ISAE/ENSMA TSA51124PoitiersFrance
  2. 2.Department of Mechanical EngineeringUniversity of SheffieldSheffieldUK

Personalised recommendations