Late Cretaceous to Oligocene Magmatic Evolution of the Neuquén Basin

  • Sofía B. IannelliEmail author
  • Lucas Fennell
  • Lucía Fernández Paz
  • Vanesa D. Litvak
  • Alfonso Encinas
  • Andrés Folguera
Part of the Springer Earth System Sciences book series (SPRINGEREARTH)


Geochemical variations in arc- and within-plate magmatic associations since Late Cretaceous times are analyzed and correlated with the main tectonic changes that influenced the Neuquén Basin evolution. The collision and southward migration of the Farallon-Aluk mid-ocean ridge along the Chilean trench since 80 Ma have played an important role in controlling the Late Cretaceous to Oligocene magmatic evolution of the arc and retroarc zones. The passage of this spreading center through the Chilean trench induced the development of geochemically distinct magmatic associations since Late Cretaceous to Eocene times associated with the extensional reactivation of the Cretaceous fold and thrust belt. Then, by Late Oligocene times, a major plate tectonic reorganization occurred when the Farallon plate broke apart and the resulting Nazca plate started an orthogonal subduction regime beneath the South American plate with higher convergence rates. Then extensional basins and associated magmatism developed at this time destabilizing the Paleogene fold and thrust belt and establishing a more homogeneous tholeiitic signature along the Andean axis.


Late Cretaceous magmatism Oligocene magmatism Extension Farallon-Aluk mid-ocean ridge 


  1. Aguirre-Urreta B, Tunik M, Naipauer M et al (2011) Malargüe Group (Maastrichtian-danian) Deposits in the Neuquén Andes: Implications for the onset of the first Atlantic transgression related to Western Gondwana break-up. Gondwana Res 19:482–494Google Scholar
  2. Aragón E, D’Eramo F, Castro A et al (2011) Tectono-magmatic response to major convergence changes in the North Patagonian suprasubduction system; the Paleogene subduction–transcurrent plate margin transition. Tectonophysics 509:218–237CrossRefGoogle Scholar
  3. Balgord EA, Carrapa B (2016) Basin evolution of Upper Cretaceous-Lower Cenozoic strata in the Malargüe fold-and-thrust belt: northern Neuquén Basin, Argentina. Basin Res 28(2):183–206Google Scholar
  4. Boyce D (2015) Modelo de Evolución Tectónica y Paleogeográfica del Margen Andino en Chile Central Durante el Cretácico Medio-Tardío: El Registro Estructural y Sedimentario en la Formación Las Chilcas. Ph.D. thesis, Universidad de Chile, SantiagoGoogle Scholar
  5. Breitsprecher K, Thorkelson DJ (2009) Neogene kinematic history of Nazca–Antarctic–Phoenix slab windows beneath Patagonia and the Antarctic Peninsula. Tectonophysics 464(1-4):10–20CrossRefGoogle Scholar
  6. Burns WM (2002) Tectonic and depositional evolution of the Tertiary Cura Mallín Basin in the southern Andes (36.5 to 38° S lat.). Ph.D. thesis, Cornell UniversityGoogle Scholar
  7. Burns WM, Jordan T, Copeland P et al (2006) Extensional tectonics in the Oligo-Miocene Southern Andes as recorded in the Cura-Mallín basin. In: Kay SM, Ramos VA (eds) Evolution of an Andean margin: a tectonic and magmatic view from the Andes to the Neuquén basin (35–39° S). Geological Society of America, SP 407, pp 163–184Google Scholar
  8. Cande SC, Leslie RB (1986) Late Cenozoic tectonics of the southern Chile trench. J Geophys Res Solid Earth 91:471–496CrossRefGoogle Scholar
  9. Cande SC, Kent DV (1992) A new geomagnetic polarity time scale for the late Cretaceous and Cenozoic. J Geophys Res 97(B10):13917–13951CrossRefGoogle Scholar
  10. Casé AM, López-Escobar L, Danieli JC, Schalamuk A (2008) Butalón igneous rocks, Neuquén, Argentina: age, stratigraphic relationships and geochemical features. J S Am Earth Sci 26(2):188–203CrossRefGoogle Scholar
  11. Charrier R, Wyss AR, Flynn JJ et al (1996) New evidence for late Mesozoic-early Cenozoic evolution of the Chilean Andes in the upper Tinguiririca valley (35 S), central Chile. J S Am Earth Sci 9:393–422CrossRefGoogle Scholar
  12. Charrier R, Baeza O, Elgueta S et al (2002) Evidence for Cenozoic extensional basin development and tectonic inversion south of the flat-slab segment, southern Central Andes, Chile (33°–36° S.L.). J S Am Earth Sci 15:117–139CrossRefGoogle Scholar
  13. Charrier R, Pinto L, Rodríguez M (2007) Tectonostratigraphic evolution of the Andean orogen in Chile. In: Moreno T, Gibbons W (eds) The geology of Chile. The Geological Society, London, pp 21–114CrossRefGoogle Scholar
  14. Charrier R, Ramos VA, Tapia F et al (2015) Tectono-stratigraphic evolution of the Andean Orogen between 31 and 37° S (Chile and Western Argentina). In: Sepúlveda SA, Giambiagi LB, Moreiras SM, Pinto L, Tunik M, Hoke GD, Farıías M (eds) Geodynamic processes in the Andes of Central Chile and Argentina. The Geological Society, London, SP 399, pp 13–61CrossRefGoogle Scholar
  15. Cobbold PR, Rosello EA (2003) Aptian to recent contractional deformation, foothills of the Neuquén basin, Argentina. Mar Petrol Geol 20(5):429–443CrossRefGoogle Scholar
  16. Cornejo P, Matthews S (2001) Evolution of magmatism from the uppermost Cretaceous to Oligocene, and its relationship to changing tectonic regime. In: Abstracts of the 3 South American symposium on isotope geology, Pucón, 21–124 Oct 2001Google Scholar
  17. Cornejo P, Matthews S, Pérez de Arce C (2003) The “K-T” compressive deformation event in northern Chile (24–27° S). In: Abstracts of the 10 Congreso Geológico Chileno, Concepción, 6–10 Oct 2003Google Scholar
  18. Encinas A, Folguera A, Oliveros V et al (2015) Late Oligocene–early Miocene submarine volcanism and deep-marine sedimentation in an extensional basin of southern Chile: Implications for the tectonic development of the North Patagonian Andes. Geol Soc Am Bull 128(5–6):807–823Google Scholar
  19. Fennell LM, Folguera A, Naipauer M, Gianni G, Rojas Vera EA, Bottesi G, Ramos VA (2015) Cretaceous deformation of the southern Central Andes: synorogenic growth strata in the Neuqu en Group (35 30’–37 S). Basin Res. Scholar
  20. Fennell LM, Iannelli SB, Folguera A et al (2017) Interrupciones extensionales en el desarrollo de la faja plegada y corrida de Malargüe (36° S). In: Abstracts of the 20 Congreso Geológico Argentino, San Miguel de Tucumán, 7–11 Aug 2017Google Scholar
  21. Folguera A, Orts D, Spagnuolo M, Rojas Vera E et al (2011) A review of Late Cretaceous to Quaternary palaeogeography of the southern Andes. Biol J Linnean Soc 103:250–268CrossRefGoogle Scholar
  22. Franchini M, Meinert Ly, Montenegro T (2000) Skarns related to porphyry-style mineralization at Caicayén Hill Neuquén, Argentina: composition and evolution of hydrotermal fluids. Econ Geol 35:1197–1213Google Scholar
  23. Franchini MB, Lopez Escobar L, Shalamuk IBA et al (2003) Paleocene, calc-alkaline subvolcanic rocks from Nevazón Hill area (NW Chos Malal fold belt), Neuquén, Argentina, and comparison with granitoids of the Neuquén Mendoza volcanic province. J S Am Earth Sci 16:399–422CrossRefGoogle Scholar
  24. Franzese JR, D’Elia L, Bilmes A et al (2011) Superposición de cuencas extensionales y contraccionales oligo-miocenas en el retroarco andino norpatagónico: la Cuenca de Aluminé, Neuquén, Argentina. Andean Geol 38:319–334CrossRefGoogle Scholar
  25. Gana P, Wall R (1997) Evidencias geocronológicas 40Ar/39Ar y K/Ar de un hiatos Cretácico superior-Eoceno en Chile central (33°–33° 30′ S). Andean Geol 24:145–163Google Scholar
  26. García Morabito E, Ramos VA (2012) Andean evolution of the Aluminé fold and thrust belt, Northern Patagonian Andes (38° 30′–40° 30′ S). J S Am Earth Sci 38:13–30CrossRefGoogle Scholar
  27. Giambiagi L, Mescua J, Bechis F et al (2012) Thrust belts of the southern Central Andes: along-strike variations in shortening, topography, crustal geometry, and denudation. Geol Soc Am Bull 124(7/8):1339–1351CrossRefGoogle Scholar
  28. Gianni GM, Pesce A, Soler SR (2018) Transient plate contraction between two simultaneous slab windows: insights from Paleogene tectonics of the Patagonian Andes. J Geodyn 121:64–75CrossRefGoogle Scholar
  29. Godoy E, Yáñez G, Vera E (1999) Inversion of an Oligocene volcano-tectonic basin and uplifting of its superimposed Miocene magmatic arc in the Chilean Central Andes: first seismic and gravity evidences. Tectonophysics 306(2):217–236CrossRefGoogle Scholar
  30. Gulisano CA, Gutiérrez Pleimling AR (1994) The Jurassic of the Neuquén Basin: field guide. Asociación Geológica Argentina, Series E, Buenos Aires, pp 1–111Google Scholar
  31. Horton BK, Fuentes F (2016) Sedimentary record of plate coupling and decoupling during growth of the Andes. Geology 44(8):647–650CrossRefGoogle Scholar
  32. Heredia N, Farías P, García-Sansegundo J et al (2012) The basement of the Andean frontal cordillera in the Cordón del Plata (Mendoza, Argentina): geodynamic evolution. Andean Geol 39:242–257Google Scholar
  33. Iannelli SB, Litvak VD, Fernández Paz L et al (2016) Late Paleogene arc-related volcanism in the North Patagonian Andes (39–41° S). In: Abstracts of the 1 Simposio de Tectónica Latinoamericana, Santiago de Chile, 14–19 Nov 2016Google Scholar
  34. Iannelli SB, Litvak VD, Fernández Paz L et al (2017a) Evolution of Eocene to Oligocene arc-related volcanism in the North Patagonian Andes (39-41° S), prior to the break-up of the Farallon plate. Tectonophysics 696–697:70–87CrossRefGoogle Scholar
  35. Iannelli SB, Fennell LM, Litvak VD et al (2017b) Volcanismo cretácico superior-paleoceno en la alta cordillera al sur de la provincia de Mendoza (35° 30′ S). In: Abstracts of the 20 Congreso Geológico Argentino, San Miguel de Tucumán, 7–11 Aug 2017Google Scholar
  36. Iannelli SB, Fennell LM, Litvak VD et al (2018) Geochemical and tectonic evolution of Late Cretaceous to early Paleocene magmatism along the Southern Central Andes (35°–36° S). J S Am Earth Sci 87:139–156CrossRefGoogle Scholar
  37. Jordan T, Burns W, Veiga R, Pángaro F et al (2001) Extension and basin formation in the Southern Andes caused by increased convergence rate: Amid-Cenozoic trigger for the Andes. Tectonics 20:308–324CrossRefGoogle Scholar
  38. Kay SM, Godoy E, Kurtz A (2005) Episodic arc migration, crustal thickening, subduction erosion, and magmatism in the south-central Andes. Geol Soc Am 117:67–88CrossRefGoogle Scholar
  39. Kay SM, Burns M, Copeland P (2006) Upper Cretaceous to Holocene magmatism and evidence for transient Miocene shallowing of the Andean subduction zone under the northern Neuquén Basin. In: Kay SM, Ramos VA (eds) Evolution of an Andean margin: a tectonic and magmatic view from the Andes to the Neuquén Basin (35–39° S). Geological Society of America, SP 407, pp 19–60Google Scholar
  40. Legarreta L, Uliana MA (1991) Jurassic-Cretaceous marine oscillations and geometry of back-arc basin fill, central Argentine Andes. Int As Sed SP 12:429–450Google Scholar
  41. Litvak VD, Poma S, Jones RE et al (2018) The Late Paleogene to Neogene volcanic arc in the Southern Central Andes (28°–37° S). In: Folguera et al. (eds) The Making of the Chilean-Argentinean Andes, Springer, Berlin, pp 503–536CrossRefGoogle Scholar
  42. Litvak VD, Spagnuolo MG, Folguera A et al (2015) Late Cenozoic calc-alkaline volcanism over the Payenia shallow subduction zone, South-Central Andean back-arc (34° 30′–37° S), Argentina. J S Am Earth Sci 64:365–380CrossRefGoogle Scholar
  43. Llambías EJ, Rapela CW (1987) Las vulcanitas de Collipilli y sus relaciones con las provincias volcanicas del Terciario inferior de Neuquen-Mendoza y Patagonia. In: X Congreso Geol ogico Argentino. Tucumán, 249–251Google Scholar
  44. Llambías EJ, Rapela CW (1989) Las vulcanitas de Collipilli, Neuqu en. y su relación con otras unidades paleogenas de la Cordilera. Rev Asoc Geol Argent 44:224–236Google Scholar
  45. Llambías EJ, Mailvicini L (1978) Geología, petrología y metalogénesis del área de Colipilli, provincia del Neuquén, República Argentina. Rev Asoc Geol Argent 33:257–276Google Scholar
  46. Llambías EJ, Quenardelle SY, Montenegro T (2003) The Choiyoi Group from central Argentina: a subalkaline transitional to alkaline association in the craton adjacent to the active margin of the Gondwana continent. J S Am Earth Sci 16:243–257CrossRefGoogle Scholar
  47. Llambías EJ, Aragón E (2011) Volcanismo Paleógeno. Geología y recursos naturales de la Provincia del Neuquén. Asociación geológica Argentina, Buenos Aires, pp 265–274Google Scholar
  48. Lonsdale P (2005) Creation of the Cocos and Nazca plates by fission of the Farallón plate. Tectonophysics 404:237–264CrossRefGoogle Scholar
  49. Manceda R, Figueroa D (1995) Inversion of the Mesozoic Neuquén rift in the Malargüe fold and thrust belt, Mendoza, Argentina. In: Tankard AJ, Suárez R, Welsink HJ. (eds) Petroleum Basins of South America. AAPG Memoir 62:369–382Google Scholar
  50. Mateo Fernández Caso MP, Montero DG et al (2011) Petrografía y geoquímica del magmatismo cretácico superior-eoceno en el área de Pichaihue. Provincia de Neuquén Rev Asoc Geol Argent 68:173–184Google Scholar
  51. Maloney KT, Clarke GL, Klepeis KA et al (2013) The Late Jurassic to present evolution of the Andean margin: drivers and the geological record. Tectonics 32(5):1049–1065CrossRefGoogle Scholar
  52. Mazzoni MM, Kawashita K, Harrison S et al (1991) Edades radimétricas eocenas. Borde occidental del macizo Norpatagónico. Rev Asoc Geol Argent 46:150–158Google Scholar
  53. Mosolf JG, Gans PB, Wyss AR et al (2018) Late Cretaceous to Miocene volcanism, sedimentation, and upper-crustal faulting and folding in the Principal Cordillera, central Chile: Field and geochronological evidence for protracted arc volcanism and transpressive deformation. Geol Soc Am Bull 131(1–2):252–273Google Scholar
  54. Mpodozis C, Allmendinger RW (1993) Extensional tectonics, Cretaceous Andes, northern Chile (27° S). Geol Soc Am Bull 105:1462–1477CrossRefGoogle Scholar
  55. Muñoz J, Troncoso R, Duhart P et al (2000) The relation of the mid-Tertiary coastal magmatic belt in south-central Chile to the late Oligocene increase in plate convergence rate. Andean Geol 27:177–203Google Scholar
  56. Muñoz M, Fuentes F, Vergara M et al (2006) Abanico East Formation: petrology and geochemistry of volcanic rocks behind the Cenozoic arc front in the Andean Cordillera, central Chile (33° 50’ S). Andean Geol 331:109–140Google Scholar
  57. Muñoz M, Tapia F, Persico M et al (2018) Extensional tectonics during Late Cretaceous evolution of the Southern Central Andes: evidence from the Chilean main range at ~35° S. Tectonophysics 744:93–117CrossRefGoogle Scholar
  58. Müller RD, Seton M, Zahirovic S et al (2016) Ocean basin evolution and global-scale plate reorganization events since Pangea breakup. Annu Rev Earth Planet Sci 44:107–138CrossRefGoogle Scholar
  59. Pardo Casas F, Molnar P (1987) Relative motion of the Nazca (Farallón) and South America plates since Late Cretaceous time. Tectonics 6:233–248CrossRefGoogle Scholar
  60. Piquer J, Hollings P, Rivera O et al (2017) Along-strike segmentation of the Abanico basin, central Chile: New chronological, geochemical and structural constraints. Lithos 268–271:174–197CrossRefGoogle Scholar
  61. Radic JP, Rojas L, Carpinelli A et al (2002) Evolución tectónica de la cuenca terciaria de Cura-Mallín, región cordillerana chileno argentina (36° 30′–39° 00′ S). In: Abstracts of the 15 Congreso Geológico Argentino, Córdoba, 23–26 Aug 2002Google Scholar
  62. Ramos VA, Folguera A (2005) Tectonic evolution of the Andes of Neuquén: constraints derived from the magmatic arc and foreland deformation. In: Veiga GD, Spalletti LA, Howell JA, Schwarz E (eds) The Neuquén Basin, Argentina: a case study in sequence stratigraphy and basin dynamics. Geol Soc, SP 252, London, pp 15–35CrossRefGoogle Scholar
  63. Ramos VA, Mosquera A, Folguera A et al (2011) Evolución tectónica de los Andes y del Engolfamiento Neuquino adyacente. In: Leanza HA, Arregui C, Carbone O et al (eds) Geología y Recursos Naturales de la Provincia del Neuquén. Asociación Geológica Argentina, Buenos Aires, pp 335–348Google Scholar
  64. Ramos VA (2010) The tectonic regime along the Andes: Present-day and Mesozoic regimes. Geol J 45:2–25CrossRefGoogle Scholar
  65. Ramos ME, Folguera A, Fennell L et al (2014) Tectonic evolution of the North Patagonian Andes from field and gravity data (39–40° S). J S Am Earth Sci 51:59–75CrossRefGoogle Scholar
  66. Ramos VA, Folguera A (2005) Tectonic evolution of the Andes of Neuquén: constraints derived from the magmatic arc and foreland deformation. In: Veiga GD, Spalletti LA, Howell JA et al (eds) The Neuquén Basin, Argentina: a case study in sequence stratigraphy and basin dynamics. The Geological Society, London, SP 252, pp 15–35CrossRefGoogle Scholar
  67. Rapela CW, Spalletti LA, Merodio CJ (1983) Evolución magmática y geotectónica de la “Serie Andesítica” Andina (Paleoceno-Eoceno) en la Cordillera Nordpatagónica. Rev Asoc Geol Argent 38:469–484Google Scholar
  68. Rapela C, Spalletti L, Merodio J et al (1988) Temporal evolution and spatial variation of early Terciary volcanism in the Patagonian Andes (40° S–42° 30′ S). J S Am Earth Sci 1:75–88CrossRefGoogle Scholar
  69. Rovere E (1998) Volcanismo Jurásico, Paleógeno y Neógeno en el Noroeste del Neuquén, Argentina. In: Abstracts of the 10 Congreso Latinoamericano de Geología y 6 Congreso Nacional de Geología Económica, Buenos Aires, 8–13 Nov 1998Google Scholar
  70. Seton M, Muller RD, Zahirovic S et al (2012) Global continental and ocean basin reconstructions since 200 Ma. Earth Sci Rev 113:212–270CrossRefGoogle Scholar
  71. Somoza R, Ghidella ME (2005) Convergencia en el margen occidental de América del Sur durante el Cenozoico: subducción de las placas de Nazca, Farallón y Aluk. Rev Asoc Geol Argent 60:797–809Google Scholar
  72. Somoza R, Ghidella ME (2012) Late Cretaceous to recent plate motions in western South America revisited. Earth Planet Sci Lett 331–332:152–163CrossRefGoogle Scholar
  73. Spagnuolo MG, Folguera A, Litvak VD et al (2012) Late Cretaceous arc rocks in the Andean retroarc region at 36.5° S: evidence supporting a Late Cretaceous slab shallowing. J S Am Earth Sci 38:44–56CrossRefGoogle Scholar
  74. Suárez M, Emparán C (1995) The stratigraphy, geochronology and paleophysiography of a Miocene freshwater interarc basin, Southern Chile. J S Am Earth Sci 8:17–31CrossRefGoogle Scholar
  75. Tapia F (2015) Evolución tectónica y configuración actual de los Andes Centrales del Sur (34° 45’–35° 30’ S). Ph.D. thesis, Universidad de ChileGoogle Scholar
  76. Thorkelson DJ (1996) Subduction of diverging plates and the principles of slab window formation. Tectonophysics 255:47–63CrossRefGoogle Scholar
  77. Utgé S, Folguera A, Litvak V et al (2009) Geología del sector norte de la cuenca de Cura Mallín en las lagunas de Epulaufquen, Neuquén. Rev Asoc Geol Argent 64:231–248Google Scholar
  78. Zamora Valcarce G, Zapata T, del Pinto A et al (2006) Structural evolution and magmatic characteristics of the Agrio fold-and-thrust belt. In: Kay SM, Ramos VA (eds) Evolution of an Andean Margin: a Tectonic and Magmatic View from the Andes to the Neuquén Basin (35°–39° S). The Geological Society, London, SP 407, pp 125–146Google Scholar
  79. Zamora Valcarce G (2007) Estructura y Cinemática de la faja plegada del Agrio, Cuenca Neuquina. Ph.D. thesis, University of Buenos AiresGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Sofía B. Iannelli
    • 1
    Email author
  • Lucas Fennell
    • 1
  • Lucía Fernández Paz
    • 1
  • Vanesa D. Litvak
    • 1
  • Alfonso Encinas
    • 2
  • Andrés Folguera
    • 1
  1. 1.Instituto de Estudios Andinos Don Pablo Groeber (IDEAN)Universidad de Buenos Aires-CONICETBuenos AiresArgentina
  2. 2.Departamento de Ciencias de la TierraUniversidad de ConcepciónConcepciónChile

Personalised recommendations