Advertisement

The Late Cretaceous Orogenic System: Early Inversion of the Neuquén Basin and Associated Synorogenic Deposits (35º–38º S)

  • Lucas FennellEmail author
  • Pablo Borghi
  • Federico Martos
  • Eduardo Agustín Rosselot
  • Maximiliano Naipauer
  • Andrés Folguera
Chapter
Part of the Springer Earth System Sciences book series (SPRINGEREARTH)

Abstract

The first regional tectonic uplift was registered in the Neuquén Basin at ca. 100 Ma, resulting in the inception of the first foreland basin of the Andes at these latitudes. The infill of this foreland basin is represented by the nonmarine deposits of the Neuquén Group, characterized by the presence of growth strata and fold-thrust belt detrital derivation, typical of wedge-top depozones. The presence of a long-lasting hiatus and angular unconformities in structures west of the wedge-top area indicate that these constituted the main detrital source areas of the Late Cretaceous foreland basin. These structures were uplifted by tectonic inversion of pre-existing normal faults, a mechanism that was also responsible for isolated basement block uplifts detected in the foredeep depozone. The regional unconformity between the synorogenic deposits of the Neuquén Group and the back-bulge deposits of the Bajada del Agrio Group represents the migration of the forebulge, which constituted another important detrital source of the foreland basin during its mature phase. An active fold-thrust belt, disconnected basement block uplifts and the identification of the typical depozones of present foreland basins provide a complete picture of the Late Cretaceous orogenic system responsible for the early inversion of the Neuquén Basin.

Keywords

Neuquén group basin Foreland basin Early andean uplift Flexural subsidence Cretaceous 

Notes

Acknowledgements

We acknowledge Nemesio Heredia and Bruno Colavitto for some of the photographs presented in this manuscript, which also greatly benefited from lively discussions with Victor Ramos, Facundo Fuentes, René Manceda, Ernesto Cristallini, Guido Gianni, Andrés Echaurren, Felipe Tapia, Emilio Rojas Vera and Mark Brandon through the years. This is the R-316 contribution of the Instituto de Estudios Andinos “Don Pablo Groeber”.

References

  1. Álvarez Cerimedo J, Orts DL et al (2013) Mecanismos y fases de construcción orogénicos del frente oriental andino (36º S, Argentina). Andean Geol 40(3):504–520Google Scholar
  2. Amilibia A, McClay KR, Sábat F et al (2005) Analogue modelling of inverted oblique rift systems. Geol Acta 3(3):251–271Google Scholar
  3. Balgord EA, Carrapa B (2016) Basin evolution of upper Cretaceous-lower cenozoic strata in the Malargüe fold-and-thrust belt: northern Neuquén Basin, Argentina. Basin Res 28(2):183–206CrossRefGoogle Scholar
  4. Barrio CA (1990) Paleogeographic control of the upper Cretaceous tidal deposits, Neuquén Basin, Argentina. J S Am Earth Sci 3(1):31–49CrossRefGoogle Scholar
  5. Bechis F, Cristallini EO, Giambiagi LB et al (2014) Transtensional tectonics induced by oblique reactivations of previous lithospheric anisotropies during the Late Triassic to Early Jurassic rifting in the Neuquén basin: insights from analog models. J Geodynamics 79:1–17CrossRefGoogle Scholar
  6. Bettini FH, Pombo RA, Mombru CA et al (1978) Consideraciones sobre el diastrofismo andino en la vertiente oriental de la cordillera principal entre los 34°30′ y los 37º de latitud sur. In: Abstracts of the 7 Congreso Geológico Argentino, Neuquén, 5–9 Nov 1978Google Scholar
  7. Boll A, Alonso J, Fuentes F et al (2014) Factores controlantes de las acumulaciones de hidrocarburos en el sector norte de la cuenca neuquina, entre los ríos Diamante y Salado, provincia de Mendoza, Argentina. In: Abstracts of the 9 Congreso de Exploración y Desarrollo de Hidrocarburos, Mendoza, 3–4 Nov 2014Google Scholar
  8. Bonini M, Sani F, Antonielli B (2012) Basin inversión and contractional reactivation of inherited normal faults: a review based on previous and new experimental models. Tectonophysics 522–523:55–88CrossRefGoogle Scholar
  9. Borghi P, Gómez Omil R, Fennell L et al (2017) Nuevas evidencias del levantamiento del sur de los Andes Centrales (36º S) durante la depositación del Grupo Neuquén. In Abstracts of the 20 Congreso Geológico Argentino, San Miguel de Tucumán, 7–11 Aug 2017Google Scholar
  10. Branellec M, Niviere B, Callot JP et al (2016) Mechanisms of basin contraction and reactivation in the basement-involved Malargüe fold-and-thrust belt, Central Andes (34–36° S). Geol Mag 153(5/6):926–944CrossRefGoogle Scholar
  11. Capaldi TN, Horton BK, McKenzie NR et al (2017) Sediment provenance in contractional orogens: the detrital zircon record from modern rivers in the Andean fold-thrust belt and foreland basin of western Argentina. Earth Planet Sci Lett 479:83–97CrossRefGoogle Scholar
  12. Cobbold PR, Rosello EA (2003) Aptian to recent compressional deformation, foothills of the Neuquén Basin, Argentina. Marine Petrol Geol 20:429–443CrossRefGoogle Scholar
  13. DeCelles PG (2012) Foreland basin systems revisited: variations in response to tectonic settings. In: Busby C, Azor A (eds) Tectonics of sedimentary basins: recent advances. Wiley-Blackwell, Oxford, pp 405–426CrossRefGoogle Scholar
  14. DeCelles PG, Giles KA (1996) Foreland basin systems. Basin Res 8(2):105–123CrossRefGoogle Scholar
  15. Di Giulio A, Ronchi A, Sanfilippo A et al (2012) Detrital zircon provenance from the Neuquén Basin (south-central Andes): Cretaceous geodynamic evolution and sedimentary response in a retroarc-foreland Basin. Geology 40:559–562CrossRefGoogle Scholar
  16. Di Giulio A, Ronchi A, Sanfilippo A et al (2017) Cretaceous evolution of the Andean margin between 36º S and 40º S latitude through a multi-proxy provenance analysis of Neuquén Basin strata (Argentina). Basin Res 29(3):284–304CrossRefGoogle Scholar
  17. Fennell LM, Folguera A, Naipauer M et al (2017a) Cretaceous deformation of the southern Central Andes: synorogenic growth strata in the Neuquén Group (35º 30′–37º S). Basin Res 29(S1):51–72CrossRefGoogle Scholar
  18. Fennell LM, Naipauer M, Folguera A (2017b) El movimiento Intersenoniano de Pablo Groeber en el norte de Neuquén y sur de Mendoza: bases de la primera orogenia andina. Rev Asoc Geol Argentina 74(1):59–73Google Scholar
  19. Fennell LM, Iannelli SB, Folguera A et al (2017) Interrupciones extensionales en el desarrollo de la faja plegada y corrida de Malargüe (36º S). In: Abstarcts of the 20 Congreso Geológico Argentino, San Miguel de Tucumán, 7–11 Aug 2017Google Scholar
  20. Folguera A, Bottesi G, Duddy I et al (2015) Exhumation of the Neuquén Basin in the southern Central Andes (Malargüe fold and thrust belt) from field data and low-temperature thermochronology. J S Am Earth Sci 64(2):381–398CrossRefGoogle Scholar
  21. Folguera A, Naipauer M, Sagripanti L et al (2016) An introduction to the Southern Andes (33–50º S): Book structure. In: Folguera A, Naipauer M, Sagripanti L, Ghiglione M, Orts DL, Giambiagi L (eds) Growth of the Southern Andes. Springer, pp 1–7Google Scholar
  22. Galarza BJ, Zamora Valcarce G, Folguera A et al (2009) Geología y Evolución tectónica del Frente Cordillerano a los 36º 30′ S: bloques de Yihuin-Huaca y Puntilla de Huincán. Mendoza. Rev Asoc Geol Argent 65(1):170–191Google Scholar
  23. Gianni GM, Dávila FM, Echaurren A et al (2018) A geodynamic model linking Cretaceous orogeny, arc migration, foreland dynamic subsidence and marine ingression in southern South America. Earth-Sci Reviews 185:437–462CrossRefGoogle Scholar
  24. Groeber P (1946) Observaciones Geológicas a lo largo del meridiano 70: 1. Hoja Chos Malal. Rev Asoc Geol Argent 1(3):117–208Google Scholar
  25. Groeber P (1947) Observaciones geológicas a lo largo del meridiano 70: 3, Hojas Domuyo, Mari Mahuida, Huarhuar-co y parte de Epu Lauken, 4, Hojas Bardas Blancas y Los Molles. Rev Asoc Geol Argent 2(4):347–433Google Scholar
  26. Horton BK (2018a) Tectonic regimes of the central and southern Andes: responses to variations in plate coupling during subduction. Tectonics 37:402.  https://doi.org/10.1002/2017TC004624CrossRefGoogle Scholar
  27. Horton BK (2018b) Sedimentary record of Andean mountain building. Earth-Sci Rev 178:279–309CrossRefGoogle Scholar
  28. Horton BK, Fuentes F, Boll A et al (2016) Andean stratigraphic record of the transition from backarc extension to orogenic shortening: a case study from the northern Neuquén Basin, Argentina. J S Am Earth Sci 71:17–40CrossRefGoogle Scholar
  29. Iannelli SB, Fennell LM, Litvak VD et al (2018) Geochemical and tectonic evolution of Late Cretaceous to early Paleocene magmatism along the Southern Central Andes (35–36º S). J S Am Earth Sci.  https://doi.org/10.1016/j.jsames.2017.12.008CrossRefGoogle Scholar
  30. Jordan TE, Allmendinger RW (1986) The Sierras Pampeanas of Argentina: a modern analogue of rocky mountain foreland deformation. Am J Sci 286:737–764CrossRefGoogle Scholar
  31. Jordan TE, Burns WM, Veiga R et al (2001) Extension and basin formation in the southern Andes caused by increased convergence rate: a mid-Cenozoic trigger for the Andes. Tectonics 20(3):308–324CrossRefGoogle Scholar
  32. Kay SM, Burns M, Copeland P (2006) Upper Cretaceous to Holocene magmatism and evidence for transient Miocene shallowing of the Andean subduction zone under the northern Neuquén Basin. In: Kay SM, Ramos VA (eds) Evolution of an Andean margin: a tectonic and magmatic view from the Andes to the Neuquén Basin (35–39º S). Geol Soc Am, SP 407, pp 19–60Google Scholar
  33. Legarreta L, Kozlowski E (1984) Secciones condensadas del Jurásico-Cretácico de los Andes del sur de Mendoza: estratigrafía y significado tectosedimentario. In: abstracts of the 9 Congreso Geológico Argentino, San Carlos de Bariloche, 5–89 Nov 1984Google Scholar
  34. Llambías EJ, Leanza HA, Carbone O (2007) Evolución tectono-magmática durante el Pérmico al Jurásico Temprano en la Cordillera del Viento (37° 05′ S–37° 15′ S): nuevas evidencias geológicas y geoquímicas del inicio de la cuenca Neuquina. Rev Asoc Geol Argentina 62(2):217–235Google Scholar
  35. Manacorda L, Reinante SME, Cazau L, Penna E (2002) Los reservorios del Grupo Neuquén. Abstracts of the V Congreso de Exploración y Desarrollo de Hidrocarburos, Mar del Plata, 29 Oct–2 Nov 2002Google Scholar
  36. Manceda R, Figueroa D (1995) Inversion of the Mesozoic Neuquén rift in the Malargüe fold and thrust belt, Mendoza, Argentina. In: Tankard AJ, Suárez R, Welsink HJ (eds) Petroleum basins of South America. AAPG Memoir, vol 62, pp 369–382Google Scholar
  37. Mescua JF, Giambiagi LB, Ramos VA (2013) Late Cretaceous uplift in the Malargüe fold-and-thrust belt (35º S), southern Central Andes of Argentina and Chile. Andean Geol 40(1):102–116Google Scholar
  38. Mescua JF, Giambiagi LB, Tassara A et al (2014) Influence of pre-Andean history over Cenozoic foreland deformation: structural styles in the Malargüe fold-and-thrust belt at 35º S, Andes of Argentina. Geosphere 10(3):585–609CrossRefGoogle Scholar
  39. Mitra S, Mount VS (1998) Foreland basement-involved structures. AAPG Bulletin 82(1):70–109Google Scholar
  40. Naipauer M, Ramos VA (2016) Changes in source areas at Neuquén basin: mesozoic evolution and tectonic setting based on U–Pb ages on zircons. In: Folguera A, Naipauer M, Sagripanti L et al (eds) Growth of the Southern Andes. Springer, New York, pp 33–61CrossRefGoogle Scholar
  41. Orts DL, Folguera A, Giménez M et al (2012) Variable structural controls through time in the Southern Central Andes (~36º S). Andean Geol 39(2):220–241Google Scholar
  42. Parras A, Griffin M (2013) Late Cretaceous (Campanian/Maastrichtian) freshwater to restricted marine mollusk fauna from the Loncoche Formation, Neuquén Basin, west-central Argentina. Cretaceous Res 40:190–206CrossRefGoogle Scholar
  43. Ramos VA (1981) Descripción geológica de la Hoja 33 c Los Chihuidos Norte, provincia del Neuquén. Bol Serv Geol Nac 182:1–103Google Scholar
  44. Ramos VA, Folguera A (2005) Tectonic evolution of the Andes of Neuquén: constraints derived from the magmatic arc and foreland deformation. In: Veiga GD, Spalletti LA, Howell JA et al (eds) The Neuquén Basin, Argentina: a case study in sequence stratigraphy and basin dynamics. Geol Soc, London, SP, vol 252, pp 15–35CrossRefGoogle Scholar
  45. Ramos VA, Cristallini EO, Pérez DJ (2002) The Pampean flat-slab of the Central Andes. J S Am Earth Sci 15:59–78CrossRefGoogle Scholar
  46. Reiners PW, Brandon MT (2006) Using thermochronology to understand orogenic erosion. Annu Rev Earth Planet Sci 34:419–466CrossRefGoogle Scholar
  47. Rojas Vera EA, Mescua J, Folguera A et al (2015) Evolution of the Chos Malal and Agrio fold and thrust belts, Andes of Neuquén: insights from structural analysis and apatite fission track dating. J S Am Earth Sci 64:418–433CrossRefGoogle Scholar
  48. Sagripanti L, Bottesi G, Naipauer M et al (2011) U/Pb ages on detrital zircons in the southern central Andes Neogene foreland (36º–37º S): constraints on Andean exhumation. J S Am Earth Sci 32(4):555–566CrossRefGoogle Scholar
  49. Sagripanti L, Folguera A, Fennell L et al (2016) Progression of the deformation in the Southern Central Andes (37º S). In: Folguera A, Naipauer M, Sagripanti L, Ghiglione M, Orts DL, Giambiagi L (eds) Growth of the Southern Andes. Springer, New York, pp 115–132CrossRefGoogle Scholar
  50. Sánchez ML, Asurmendi E (2014) Modelo de depósito de la Formación Cerro Lisandro: lóbulos de desembocadura y deltas de tipo Gilbert. Cretácico superior, región central de cuenca Neuquina, Argentina. Rev Mex Cs Geol 31(2):141–162Google Scholar
  51. Sánchez ML, Asurmendi E, Armas P (2013) Subgrupo Río Colorado (Grupo Neuquén): registros de paleosismicidad en la cuenca de antepaís andina, Cuenca Neuquina, Provincias de Neuquén y Río Negro. Rev Asoc Geol Argent 70(1):96–114Google Scholar
  52. Sánchez NP, Coutand I, Turienzo M et al (2018) Tectonic evolution of the Chos Malal fodl.and.thrust belt (Neuquén Basin, Argentina) from (U-Th)/He and fission track thermochronometry. Tectonics 37:1907–1929.  https://doi.org/10.1029/2018tc004981CrossRefGoogle Scholar
  53. Silvestro J, Zubiri M (2008) Convergencia Oblicua: Modelo estructural alternativo para la dorsal neuquina (39º S)—Neuquén. Rev Asoc Geol Argent 63(1):49–64Google Scholar
  54. Silvestro J, Atencio M (2009) La cuenca Cenozoica del Río Grande y Palauco: Edad, evolución y control estructural, faja plegada de Malargüe (36º S). Rev Asoc Geol Argent 65(1):154–169Google Scholar
  55. Silvestro J, Kraemer P, Achilli F et al (2005) Evolución de las cuencas sinorogéncias de la Cordillera Principal entre 35º–36º S, Malargüe. Rev Asoc Geol Argent 60(4):627–643Google Scholar
  56. Tunik M, Folguera A, Naipauer M et al (2010) Early uplift and orogenic deformation in the Neuquén Basin: Constraints on the Andean uplift from U–Pb and Hf isotopic data of detrital zircons. Tectonophysics 489:258–273CrossRefGoogle Scholar
  57. Vergani GD, Tankard J, Belotti J et al (1995) Tectonic evolution and paleogeography of the Neuquén basin, Argentina. In: Tankard AJ, Suárez R, Welsink HJ (eds) Petroleum Basins of South America. AAPG Memoir, vol 62, pp 383–402Google Scholar
  58. Zamora Valcarce G, Zapata T, Ramos VA et al (2009) Evolución tectónica del frente andino en Neuquén. Rev Asoc Geol Argent 65(1):192–203Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Lucas Fennell
    • 1
    Email author
  • Pablo Borghi
    • 2
  • Federico Martos
    • 1
  • Eduardo Agustín Rosselot
    • 1
  • Maximiliano Naipauer
    • 1
  • Andrés Folguera
    • 1
  1. 1.CONICET—Universidad de Buenos Aires, Instituto de Estudios Andinos Don Pablo Groeber (IDEAN)Buenos AiresArgentina
  2. 2.Wintershall Energía S. ABuenos AiresArgentina

Personalised recommendations