Advertisement

Biology of Ewing Sarcoma

  • Katia ScotlandiEmail author
Chapter

Abstract

Sarcomas are a heterogeneous group of malignant tumors that are derived from mesenchymal tissues, including bone, muscle, and cartilage. In the last decade, we have gained significant new insights into the genetic abnormalities that underlie the pathogenesis of these tumors. Specific molecular alterations have been associated with specific histological subtypes of sarcomas, leading to a new classification of many sarcomas. Conventionally grouped in either soft-tissue or bone sarcomas according to the site of their origin, these tumors can now be genetically distinguished in two main groups: those carrying tumor-specific recurrent chromosome aberrations and those with complex karyotypes and variable genetic alterations [1, 2]. Sarcomas with recurrent molecular changes include, among others, Ewing sarcoma, synovial sarcoma, alveolar rhabdomyosarcoma, myxoid liposarcoma and myxoid chondrosarcoma.

Keywords

Chromosomal translocations Gene mutations Chimeric fusion proteins EWSR1-FLI1 fusion EWSR1-ERG fusion 

References

  1. 1.
    Helman LJ, Meltzer P. Mechanisms of sarcoma development. Nat Rev Cancer. 2003;3(9):685–94.PubMedCrossRefGoogle Scholar
  2. 2.
    Wunder JS, et al. Opportunities for improving the therapeutic ratio for patients with sarcoma. Lancet Oncol. 2007;8(6):513–24.PubMedCrossRefGoogle Scholar
  3. 3.
    Delattre O, et al. Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours. Nature. 1992;359:162–5.PubMedCrossRefGoogle Scholar
  4. 4.
    Sorensen PH, et al. A second Ewing’s sarcoma translocation, t(21;22), fuses the EWS gene to another ETS-family transcription factor, ERG. Nat Genet. 1994;6:146–51.PubMedCrossRefGoogle Scholar
  5. 5.
    Jeon IS, et al. A variant Ewing’s sarcoma translocation (7;22) fuses the EWS gene to the ETS gene ETV1. Oncogene. 1995;10:1229–34.PubMedGoogle Scholar
  6. 6.
    Peter M, et al. A new member of the ETS family fused to EWS in Ewing tumors. Oncogene. 1997;14:1159–64.PubMedCrossRefGoogle Scholar
  7. 7.
    Ng TL, et al. Ewing sarcoma with novel translocation t(2;16) producing an in-frame fusion of FUS and FEV. J Mol Diagn. 2007;9:459–63.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Ginsberg JP, et al. EWS-FLI1 and EWS-ERG gene fusions are associated with similar clinical phenotypes in Ewing’s sarcoma. J Clin Oncol. 1999;17:1809–14.PubMedCrossRefGoogle Scholar
  9. 9.
    Brohl AS, et al. The genomic landscape of the Ewing sarcoma family of tumors reveals recurrent STAG2 mutation. PLoS Genet. 2014;10(7):e1004475.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Crompton BD, et al. The genomic landscape of pediatric Ewing sarcoma. Cancer Discov. 2014;4(11):1326–41.PubMedCrossRefGoogle Scholar
  11. 11.
    Tirode F, et al. Genomic landscape of Ewing sarcoma defines an aggressive subtype with co-association of STAG2 and TP53 mutations. Cancer Discov. 2014;4(11):1342–53.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Gangwal K, et al. Microsatellites as EWS/FLI response elements in Ewing’s sarcoma. Proc Natl Acad Sci U S A. 2008;105:10149–54.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Guillon N, et al. The oncogenic EWS-FLI1 protein binds in vivo GGAA microsatellite sequences with potential transcriptional activation function. PLoS One. 2009;4:e4932.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Tomazou EM, et al. Epigenome mapping reveals distinct modes of gene regulation and widespread enhancer reprogramming by the oncogenic fusion protein EWS-FLI1. Cell Rep. 2015;10:1082–95.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Sheffield NC, et al. DNA methylation heterogeneity defines a disease spectrum in Ewing sarcoma. Nat Med. 2017;23:386–95.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Riggi N, et al. EWS-FLI1 utilizes divergent chromatin remodeling mechanisms to directly activate or repress enhancer elements in Ewing sarcoma. Cancer Cell. 2014;26:668–81.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Rocchi A, et al. CD99 inhibits neural differentiation of human Ewing sarcoma cells and thereby contributes to oncogenesis. J Clin Invest. 2010;120(3):668–80.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Herrero-Martín D, et al. Stable interference of EWS-FLI1 in an Ewing sarcoma cell line impairs IGF-1/IGF-1R signalling and reveals TOPK as a new target. Br J Cancer. 2009;101(1):80–90.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Hattinger CM, et al. Prognostic impact of chromosomal aberrations in Ewing tumours. Br J Cancer. 2002;86:1763–9.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Mackintosh C, et al. 1q gain and CDT2 overexpression underlie an aggressive and highly proliferative form of Ewing sarcoma. Oncogene. 2012;31:1287–98.PubMedCrossRefGoogle Scholar
  21. 21.
    Erkizan HV, et al. A small molecule blocking oncogenic protein EWS-FLI1 interaction with RNA helicase A inhibits growth of Ewing’s sarcoma. Nat Med. 2009;15:750–6.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Olmos D, et al. Safety, pharmacokinetics, and preliminary activity of the anti-IGF-1R antibody figitumumab (CP-751,871) in patients with sarcoma and Ewing’s sarcoma: a phase 1 expansion cohort study. Lancet Oncol. 2010;11:129–35.PubMedCrossRefGoogle Scholar
  23. 23.
    Pappo AS, et al. R1507, a monoclonal antibody to the insulin-like growth factor 1 receptor, in patients with recurrent or refractory Ewing sarcoma family of tumors: results of a phase II sarcoma alliance for research through collaboration study. J Clin Oncol. 2011;29:4541–7.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Theisen ER, Pishas KI, Saund RS, Lessnick SL. Therapeutic opportunities in Ewing sarcoma: EWS-FLI inhibition via LSD1 targeting. Oncotarget. 2016;7:17616–30.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Brenner JC, et al. PARP-1 inhibition as a targeted strategy to treat Ewing’s sarcoma. Cancer Res. 2012;72(7):1608–13.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Gorthi A, et al. EWS–FLI1 increases transcription to cause R-loops and block BRCA1 repair in Ewing sarcoma. Nature. 2018;555:387–91.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Ordóñez JL, et al. The PARP inhibitor olaparib enhances the sensitivity of Ewing sarcoma to trabectedin. Oncotarget. 2015;6:18875–90.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Engert F, et al. PARP inhibitors sensitize Ewing sarcoma cells to temozolomide-induced apoptosis via the mitochondrial pathway. Mol Cancer Ther. 2015;14:2818–30.PubMedCrossRefGoogle Scholar
  29. 29.
    Machado I, et al. Immunohistochemical analysis and prognostic significance of PD-L1, PD-1, and CD8+ tumor-infiltrating lymphocytes in Ewing’s sarcoma family of tumors (ESFT). Virchows Arch. 2018;472:815–24.PubMedCrossRefGoogle Scholar
  30. 30.
    Spurny C, et al. Programmed cell death ligand 1 (PD-L1) expression is not a predominant feature in Ewing sarcomas. Pediatr Blood Cancer. 2018;65:e26719.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Laboratory of Experimental OncologyIRCCS Istituto Ortopedico RizzoliBolognaItaly

Personalised recommendations