Biology of Osteosarcomas

  • Massimo SerraEmail author
  • Claudia Maria Hattinger


Unlike other sarcomas, high-grade osteosarcoma (HGOS) is characterized by complex, unbalanced karyotypes and alterations in multiple genes and pathways. Due to HGOS high genetic instability, recurrent chromothripsis (a massive genomic rearrangement due to a cataclysmic event in which chromosomes are fragmented and subsequently aberrantly assembled), kataegis (high number of genetic changes due to localized hypermutation areas), and chromoplexy (a process generating chimeric chromosomes) are rather common events and lead to multiple malignant cell populations within the same tumor [1, 2].


Complex karyotype Genetic instability Somatic mutations P-glycoprotein MDM2 gene amplification CDK4 gene amplification 


  1. 1.
    Chen X, Bahrami A, Pappo A, Easton J, Dalton J, Hedlund E, et al. Recurrent somatic structural variations contribute to tumorigenesis in pediatric osteosarcoma. Cell Rep. 2014;7(1):104–12. S2211-1247(14)00165-X [pii].CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Sandberg AA, Bridge JA. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: osteosarcoma and related tumors. Cancer Genet Cytogenet. 2003;145(1):1–30. S0165460803001055 [pii].CrossRefGoogle Scholar
  3. 3.
    Gianferante DM, Mirabello L, Savage SA. Germline and somatic genetics of osteosarcoma—connecting aetiology, biology and therapy. Nat Rev Endocrinol. 2017;13(8):480–91. nrendo.2017.16 [pii].CrossRefPubMedGoogle Scholar
  4. 4.
    Hattinger CM, Reverter-Branchat G, Remondini D, Castellani GC, Benini S, Pasello M, et al. Genomic imbalances associated with methotrexate resistance in human osteosarcoma cell lines detected by comparative genomic hybridization-based techniques. Eur J Cell Biol. 2003;82(9):483–93. S0171-9335(04)70319-2 [pii].CrossRefPubMedGoogle Scholar
  5. 5.
    Hattinger CM, Stoico G, Michelacci F, Pasello M, Scionti I, Remondini D, et al. Mechanisms of gene amplification and evidence of coamplification in drug-resistant human osteosarcoma cell lines. Genes Chromosomes Cancer. 2009;48(4):289–309. Scholar
  6. 6.
    Hattinger CM, Fanelli M, Tavanti E, Vella S, Ferrari S, Picci P, et al. Advances in emerging drugs for osteosarcoma. Expert Opin Emerg Drugs. 2015;20(3):495–514. Scholar
  7. 7.
    Baldini N, Scotlandi K, Barbanti-Brodano G, Manara MC, Maurici D, Bacci G, et al. Expression of P-glycoprotein in high-grade osteosarcomas in relation to clinical outcome. N Engl J Med. 1995;333(21):1380–5. Scholar
  8. 8.
    Chan HS, Grogan TM, Haddad G, DeBoer G, Ling V. P-glycoprotein expression: critical determinant in the response to osteosarcoma chemotherapy. J Natl Cancer Inst. 1997;89(22):1706–15.CrossRefGoogle Scholar
  9. 9.
    Pakos EE, Ioannidis JP. The association of P-glycoprotein with response to chemotherapy and clinical outcome in patients with osteosarcoma. A meta-analysis. Cancer. 2003;98(3):581–9. Scholar
  10. 10.
    Serra M, Pasello M, Manara MC, Scotlandi K, Ferrari S, Bertoni F, et al. May P-glycoprotein status be used to stratify high-grade osteosarcoma patients? Results from the Italian/Scandinavian Sarcoma Group 1 treatment protocol. Int J Oncol. 2006;29(6):1459–68.PubMedGoogle Scholar
  11. 11.
    Serra M, Scotlandi K, Reverter-Branchat G, Ferrari S, Manara MC, Benini S, et al. Value of P-glycoprotein and clinicopathologic factors as the basis for new treatment strategies in high-grade osteosarcoma of the extremities. J Clin Oncol. 2003;21(3):536–42. Scholar
  12. 12.
    Fanelli M, Hattinger CM, Vella S, Tavanti E, Michelacci F, Gudeman B, et al. Targeting ABCB1 and ABCC1 with their specific inhibitor CBT-1(R) can overcome drug resistance in osteosarcoma. Curr Cancer Drug Targets. 2016;16(3):261–74. CCDT-EPUB-71612 [pii].CrossRefGoogle Scholar
  13. 13.
    Chou AJ, Kleinerman ES, Krailo MD, Chen Z, Betcher DL, Healey JH, et al. Addition of muramyl tripeptide to chemotherapy for patients with newly diagnosed metastatic osteosarcoma: a report from the Children’s Oncology Group. Cancer. 2009;115(22):5339–48. Scholar
  14. 14.
    Meyers PA. Muramyl tripeptide (mifamurtide) for the treatment of osteosarcoma. Expert Rev Anticancer Ther. 2009;9(8):1035–49. Scholar
  15. 15.
    Meyers PA, Chou AJ. Muramyl tripeptide-phosphatidyl ethanolamine encapsulated in liposomes (L-MTP-PE) in the treatment of osteosarcoma. Adv Exp Med Biol. 2014;804:307–21. Scholar
  16. 16.
    Hattinger CM, Vella S, Tavanti E, Fanelli M, Picci P, Serra M. Pharmacogenomics of second-line drugs used for treatment of unresponsive or relapsed osteosarcoma patients. Pharmacogenomics. 2016;17(18):2097–114. Scholar
  17. 17.
    Serra M, Hattinger CM. The pharmacogenomics of osteosarcoma. Pharmacogenomics J. 2017;17(1):11–20. tpj201645 [pii].CrossRefPubMedGoogle Scholar
  18. 18.
    Kovac M, Blattmann C, Ribi S, Smida J, Mueller NS, Engert F, et al. Exome sequencing of osteosarcoma reveals mutation signatures reminiscent of BRCA deficiency. Nat Commun. 2015;6:8940. ncomms9940 [pii].CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Laboratory of Experimental OncologyIRCCS Istituto Ortopedico RizzoliBolognaItaly

Personalised recommendations