Signature of Lepton Flavor Universality Violation in \(B_s \rightarrow D_s \tau \nu \) Semileptonic Decays

  • Rupak Dutta
  • N. RajeevEmail author
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 234)


Deviation from the standard model prediction is observed in many semileptonic B decays mediated via \(b \rightarrow c\) charged current interactions. In particular, current experimental measurements of the ratio of branching ratio \(R_D\) and \(R_{D^{*}}\) in \(B \rightarrow D^{(*)}l \nu \) decays disagree with standard model expectations at the level of about \(4.1\sigma \). Moreover, recent measurement of the ratio of branching ratio \(R_{J/\varPsi }\) by LHCb, where \(R_{J/\varPsi } = \mathcal B(B_c \rightarrow J/\varPsi \,\tau \nu )/\mathcal B(B_c \rightarrow J/\varPsi \,\mu \nu )\), is more than \(2\sigma \) away from the standard model prediction. In this context, we consider an effective Lagrangian in the presence of vector and scalar new physics couplings to study the implications of \(R_D\) and \(R_{D^{*}}\) anomalies in \(B_s \rightarrow D_s\,\tau \nu \) decays. We give prediction of several observables such as branching ratio, ratio of branching ratio, forward backward asymmetry parameter, \(\tau \) polarization fraction, and the convexity parameter for the \(B_s \rightarrow D_s\,\tau \nu \) decays within the standard model and within various new physics scenarios.


  1. 1.
    J.A. Bailey et al., [MILC Collaboration], Phys. Rev. D 92(3), 034506 (2015)Google Scholar
  2. 2.
    H. Na et al., [HPQCD Collaboration], Phys. Rev. D 92(5), 054510 (2015)Google Scholar
  3. 3.
    S. Aoki et al., Eur. Phys. J. C 77(2), 112 (2017)Google Scholar
  4. 4.
    D. Bigi, P. Gambino, Phys. Rev. D 94(9), 094008 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    S. Fajfer, J.F. Kamenik, I. Nisandzic, Phys. Rev. D 85, 094025 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    D. Bigi, P. Gambino, S. Schacht, JHEP 1711, 061 (2017)ADSCrossRefGoogle Scholar
  7. 7.
    J.P. Lees et al., [BaBar Collaboration], Phys. Rev. D 88(7), 072012 (2013)Google Scholar
  8. 8.
    M. Huschle et al., [Belle Collaboration], Phys. Rev. D 92(7), 072014 (2015)Google Scholar
  9. 9.
    Y. Sato et al., [Belle Collaboration], Phys. Rev. D 94(7), 072007 (2016)Google Scholar
  10. 10.
    S. Hirose et al., [Belle Collaboration], Phys. Rev. Lett. 118(21), 211801 (2017)Google Scholar
  11. 11.
    R. Aaij et al., [LHCb Collaboration], Phys. Rev. Lett. 115(11), 111803 (2015)Google Scholar
  12. 12.
    Y. Amhis et al., [HFLAV Collaboration], Eur. Phys. J. C 77(12), 895 (2017)Google Scholar
  13. 13.
    R. Aaij et al., [LHCb Collaboration], arXiv:1711.05623 [hep-ex]
  14. 14.
    C.J. Monahan, H. Na, C.M. Bouchard, G.P. Lepage, J. Shigemitsu, Phys. Rev. D 95(11), 114506 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    V. Cirigliano, J. Jenkins, M. Gonzalez-Alonso, Nucl. Phys. B 830, 95 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    T. Bhattacharya, V. Cirigliano, S.D. Cohen, A. Filipuzzi, M. Gonzalez-Alonso, M.L. Graesser, R. Gupta, H.W. Lin, Phys. Rev. D 85, 054512 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    R. Dutta, N. Rajeev, Phys. Rev. D 97(9), 095045 (2018)ADSCrossRefGoogle Scholar
  18. 18.
    A.G. Akeroyd, C.H. Chen, Phys. Rev. D 96(7), 075011 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.National Institute of Technology SilcharSilcharIndia

Personalised recommendations